These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 7764000)

  • 21. Bioreactors and in situ product recovery techniques for acetone-butanol-ethanol fermentation.
    Li SY; Chiang CJ; Tseng IT; He CR; Chao YP
    FEMS Microbiol Lett; 2016 Jul; 363(13):. PubMed ID: 27190167
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficient calcium lactate production by fermentation coupled with crystallization-based in situ product removal.
    Xu K; Xu P
    Bioresour Technol; 2014 Jul; 163():33-9. PubMed ID: 24780270
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Supercritical fluid extractions in biotechnology.
    Randolph TW
    Trends Biotechnol; 1990 Mar; 8(3):78-82. PubMed ID: 1366501
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Application of in situ product-removal techniques to biocatalytic processes.
    Lye GJ; Woodley JM
    Trends Biotechnol; 1999 Oct; 17(10):395-402. PubMed ID: 10481171
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Anion exchange chromatography provides a robust, predictable process to ensure viral safety of biotechnology products.
    Strauss DM; Gorrell J; Plancarte M; Blank GS; Chen Q; Yang B
    Biotechnol Bioeng; 2009 Jan; 102(1):168-75. PubMed ID: 18683259
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Raman spectroscopy as a process analytical technology for pharmaceutical manufacturing and bioprocessing.
    Esmonde-White KA; Cuellar M; Uerpmann C; Lenain B; Lewis IR
    Anal Bioanal Chem; 2017 Jan; 409(3):637-649. PubMed ID: 27491299
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Integration of newly isolated biocatalyst and resin-based in situ product removal technique for the asymmetric synthesis of (R)-methyl mandelate.
    Guo JL; Mu XQ; Xu Y
    Bioprocess Biosyst Eng; 2010 Sep; 33(7):797-804. PubMed ID: 20033429
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A membrane stirrer for product recovery and substrate feeding.
    Femmer T; Carstensen F; Wessling M
    Biotechnol Bioeng; 2015 Feb; 112(2):331-8. PubMed ID: 25212847
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A review of enzymes and microbes for lignocellulosic biorefinery and the possibility of their application to consolidated bioprocessing technology.
    Hasunuma T; Okazaki F; Okai N; Hara KY; Ishii J; Kondo A
    Bioresour Technol; 2013 May; 135():513-22. PubMed ID: 23195654
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Production of ε-poly-L-lysine by Streptomyces sp. using resin-based, in situ product removal.
    Liu S; Wu Q; Zhang J; Mo S
    Biotechnol Lett; 2011 Aug; 33(8):1581-5. PubMed ID: 21720848
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced production of styrene by engineered Escherichia coli and in situ product recovery (ISPR) with an organic solvent.
    Lee K; Bang HB; Lee YH; Jeong KJ
    Microb Cell Fact; 2019 May; 18(1):79. PubMed ID: 31053078
    [TBL] [Abstract][Full Text] [Related]  

  • 32. White paper on continuous bioprocessing. May 20-21, 2014 Continuous Manufacturing Symposium.
    Konstantinov KB; Cooney CL
    J Pharm Sci; 2015 Mar; 104(3):813-20. PubMed ID: 25417595
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Process strategies to enhance pyruvate production with recombinant Escherichia coli: from repetitive fed-batch to in situ product recovery with fully integrated electrodialysis.
    Zelić B; Gostović S; Vuorilehto K; Vasić-Racki D; Takors R
    Biotechnol Bioeng; 2004 Mar; 85(6):638-46. PubMed ID: 14966805
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improving the Yield of Xenocoumacin 1 Enabled by In Situ Product Removal.
    Dong Y; Li X; Duan J; Qin Y; Yang X; Ren J; Li G
    ACS Omega; 2020 Aug; 5(32):20391-20398. PubMed ID: 32832792
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Auxiliary phase guidelines for microbial biotransformations of toxic substrate into toxic product.
    Straathof AJ
    Biotechnol Prog; 2003; 19(3):755-62. PubMed ID: 12790635
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Demonstration of in situ product recovery of butyric acid via CO2 -facilitated pH swings and medium development in two-phase partitioning bioreactors.
    Peterson EC; Daugulis AJ
    Biotechnol Bioeng; 2014 Mar; 111(3):537-44. PubMed ID: 23996152
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Consolidated bioprocessing of cellulosic biomass: an update.
    Lynd LR; van Zyl WH; McBride JE; Laser M
    Curr Opin Biotechnol; 2005 Oct; 16(5):577-83. PubMed ID: 16154338
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A pervaporation-bio-hybridreactor (PBHR) for improved aroma biosynthesis with submerged culture of Ceratocystis fimbriata.
    Stefer B; Schilling M; Kunz B
    Commun Agric Appl Biol Sci; 2003; 68(2 Pt A):247-52. PubMed ID: 15296172
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bioprocess engineering for microbial synthesis and conversion of isoprenoids.
    Schewe H; Mirata MA; Schrader J
    Adv Biochem Eng Biotechnol; 2015; 148():251-86. PubMed ID: 25893480
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fully integrated L-phenylalanine separation and concentration using reactive-extraction with liquid-liquid centrifuges in a fed-batch process with E. coli.
    Rüffer N; Heidersdorf U; Kretzers I; Sprenger GA; Raeven L; Takors R
    Bioprocess Biosyst Eng; 2004 Jul; 26(4):239-48. PubMed ID: 15045576
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.