These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 7764012)

  • 1. Survival and impact of genetically engineered Pseudomonas putida harboring mercury resistance gene in aquatic microcosms.
    Iwasaki K; Uchiyama H; Yagi O
    Biosci Biotechnol Biochem; 1993 Aug; 57(8):1264-9. PubMed ID: 7764012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Survival and impact of genetically engineered Pseudomonas putida harboring mercury resistance gene in soil microcosms.
    Iwasaki K; Uchiyama H; Yagi O
    Biosci Biotechnol Biochem; 1994 Jan; 58(1):156-9. PubMed ID: 7764510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetically Engineered Erwinia carotovora in Aquatic Microcosms: Survival and Effects on Functional Groups of Indigenous Bacteria.
    Scanferlato VS; Orvos DR; Cairns J; Lacy GH
    Appl Environ Microbiol; 1989 Jun; 55(6):1477-82. PubMed ID: 16347942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of microcosm design on the survival of recombinant Pseudomonas putida in lake water.
    Morgan JA; Rhodes G; Pickup RW; Winstanley C; Saunders JR
    Microb Releases; 1992 Dec; 1(3):155-9. PubMed ID: 1342636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of a novel plasmid to monitor the fate of a genetically engineered Pseudomonas putida strain.
    Genthner FJ; Campbell RP; Pritchard PH
    Mol Ecol; 1992 Oct; 1(3):137-43. PubMed ID: 1344990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characteristics of Escherichia coli HB101 and Pseudomonas putida PpY101 harboring a recombinant plasmid with tandem insertion of the mercury resistance operon.
    Kurabayashi T; Iwasaki K; Uchiyama H; Nakamura K; Tanaka H; Yagi O
    Biosci Biotechnol Biochem; 1997 Jul; 61(7):1187-9. PubMed ID: 9255983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of mercuric chloride by a genetically engineered mercury-volatilizing bacterium Pseudomonas putida PpY101/pSR134.
    Okino S; Iwasaki K; Yagi O; Tanaka H
    Bull Environ Contam Toxicol; 2002 May; 68(5):712-9. PubMed ID: 12068938
    [No Abstract]   [Full Text] [Related]  

  • 8. Microcosm for assessing survival of genetically engineered microorganisms in aquatic environments.
    Awong J; Bitton G; Chaudhry GR
    Appl Environ Microbiol; 1990 Apr; 56(4):977-83. PubMed ID: 2187407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioluminescence-based detection of genetically engineered microorganisms in nonsterile river water.
    Heller S; Bühler S; Kilz S; Mieschendahl M
    Microb Releases; 1992 Jun; 1(1):35-9. PubMed ID: 1341987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptation of model genetically engineered microorganisms to lake water: growth rate enhancements and plasmid loss.
    Sobecky PA; Schell MA; Moran MA; Hodson RE
    Appl Environ Microbiol; 1992 Nov; 58(11):3630-7. PubMed ID: 1482185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial retention of mercury from waste streams in a laboratory column containing merA gene bacteria.
    Brunke M; Deckwer WD; Frischmuth A; Horn JM; Lünsdorf H; Rhode M; Röhricht M; Timmis KN; Weppen P
    FEMS Microbiol Rev; 1993 Jul; 11(1-3):145-52. PubMed ID: 8395193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transformation of Pseudomonas putida by electroporation.
    Iwasaki K; Uchiyama H; Yagi O; Kurabayashi T; Ishizuka K; Takamura Y
    Biosci Biotechnol Biochem; 1994 May; 58(5):851-4. PubMed ID: 7764975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methods for detection of conjugative plasmid transfer in aquatic environments.
    Sengeløv G; Sørensen SJ
    Curr Microbiol; 1998 Oct; 37(4):274-80. PubMed ID: 9732536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autecological properties of 3-chlorobenzoate-degrading bacteria and their population dynamics when introduced into sediments.
    Bott TL; Kaplan LA
    Microb Ecol; 2002 Mar; 43(2):199-216. PubMed ID: 12023727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Siderophore receptor PupA as a marker to monitor wild-type Pseudomonas putida WCS358 in natural environments.
    Raaijmakers JM; Bitter W; Punte HL; Bakker PA; Weisbeek PJ; Schippers B
    Appl Environ Microbiol; 1994 Apr; 60(4):1184-90. PubMed ID: 8017914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression and transfer of engineered catabolic pathways harbored by Pseudomonas spp. introduced into activated sludge microcosms.
    Nüsslein K; Maris D; Timmis K; Dwyer DF
    Appl Environ Microbiol; 1992 Oct; 58(10):3380-6. PubMed ID: 1444370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport of a genetically engineered Pseudomonas fluorescens strain through a soil microcosm.
    Trevors JT; van Elsas JD; van Overbeek LS; Starodub ME
    Appl Environ Microbiol; 1990 Feb; 56(2):401-8. PubMed ID: 2106286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impacts of gene bioaugmentation with pJP4-harboring bacteria of 2,4-D-contaminated soil slurry on the indigenous microbial community.
    Inoue D; Yamazaki Y; Tsutsui H; Sei K; Soda S; Fujita M; Ike M
    Biodegradation; 2012 Apr; 23(2):263-76. PubMed ID: 21850504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tracking genetically engineered bacteria: monoclonal antibodies against surface determinants of the soil bacterium Pseudomonas putida 2440.
    Ramos-González MI; Ruiz-Cabello F; Brettar I; Garrido F; Ramos JL
    J Bacteriol; 1992 May; 174(9):2978-85. PubMed ID: 1373718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Field and soil microcosm studies on the survival and conjugation of a Pseudomonas putida strain bearing a recombinant plasmid, pADPTel.
    Hirkala DL; Germida JJ
    Can J Microbiol; 2004 Aug; 50(8):595-604. PubMed ID: 15467785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.