BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 7764431)

  • 1. Mixed lactic acid-alcoholic fermentation by Saccharomyces cerevisiae expressing the Lactobacillus casei L(+)-LDH.
    Dequin S; Barre P
    Biotechnology (N Y); 1994 Feb; 12(2):173-7. PubMed ID: 7764431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pleiotropic effects of lactate dehydrogenase inactivation in Lactobacillus casei.
    Viana R; Yebra MJ; Galán JL; Monedero V; Pérez-Martínez G
    Res Microbiol; 2005; 156(5-6):641-9. PubMed ID: 15882939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Double mutation of the PDC1 and ADH1 genes improves lactate production in the yeast Saccharomyces cerevisiae expressing the bovine lactate dehydrogenase gene.
    Tokuhiro K; Ishida N; Nagamori E; Saitoh S; Onishi T; Kondo A; Takahashi H
    Appl Microbiol Biotechnol; 2009 Apr; 82(5):883-90. PubMed ID: 19122995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NADH reoxidation does not control glycolytic flux during exposure of respiring Saccharomyces cerevisiae cultures to glucose excess.
    Brambilla L; Bolzani D; Compagno C; Carrera V; van Dijken JP; Pronk JT; Ranzi BM; Alberghina L; Porro D
    FEMS Microbiol Lett; 1999 Feb; 171(2):133-40. PubMed ID: 10077837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward "homolactic" fermentation of glucose and xylose by engineered Saccharomyces cerevisiae harboring a kinetically efficient l-lactate dehydrogenase within pdc1-pdc5 deletion background.
    Novy V; Brunner B; Müller G; Nidetzky B
    Biotechnol Bioeng; 2017 Jan; 114(1):163-171. PubMed ID: 27426989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lactic acid production by Saccharomyces cerevisiae expressing a Rhizopus oryzae lactate dehydrogenase gene.
    Skory CD
    J Ind Microbiol Biotechnol; 2003 Jan; 30(1):22-7. PubMed ID: 12545382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lactic acid production in Saccharomyces cerevisiae is modulated by expression of the monocarboxylate transporters Jen1 and Ady2.
    Pacheco A; Talaia G; Sá-Pessoa J; Bessa D; Gonçalves MJ; Moreira R; Paiva S; Casal M; Queirós O
    FEMS Yeast Res; 2012 May; 12(3):375-81. PubMed ID: 22260735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. D-lactic acid production by metabolically engineered Saccharomyces cerevisiae.
    Ishida N; Suzuki T; Tokuhiro K; Nagamori E; Onishi T; Saitoh S; Kitamoto K; Takahashi H
    J Biosci Bioeng; 2006 Feb; 101(2):172-7. PubMed ID: 16569615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of ldh genes in Lactobacillus casei BL23: role on lactic acid production.
    Rico J; Yebra MJ; Pérez-Martínez G; Deutscher J; Monedero V
    J Ind Microbiol Biotechnol; 2008 Jun; 35(6):579-86. PubMed ID: 18231816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of L-lactic acid by the yeast Candida sonorensis expressing heterologous bacterial and fungal lactate dehydrogenases.
    Ilmén M; Koivuranta K; Ruohonen L; Rajgarhia V; Suominen P; Penttilä M
    Microb Cell Fact; 2013 May; 12():53. PubMed ID: 23706009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional expression in Saccharomyces cerevisiae of the Lactococcus lactis mleS gene encoding the malolactic enzyme.
    Denayrolles M; Aigle M; Lonvaud-Funel A
    FEMS Microbiol Lett; 1995 Jan; 125(1):37-43. PubMed ID: 7867919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Malolactic fermentation by engineered Saccharomyces cerevisiae as compared with engineered Schizosaccharomyces pombe.
    Ansanay V; Dequin S; Camarasa C; Schaeffer V; Grivet JP; Blondin B; Salmon JM; Barre P
    Yeast; 1996 Mar; 12(3):215-25. PubMed ID: 8904333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nicotinic acid controls lactate production by K1-LDH: a Saccharomyces cerevisiae strain expressing a bacterial LDH gene.
    Colombié S; Sablayrolles JM
    J Ind Microbiol Biotechnol; 2004 Jun; 31(5):209-15. PubMed ID: 15205990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering of Saccharomyces cerevisiae for efficient production of pure L-(+)-lactic acid.
    Ishida N; Saitoh S; Ohnishi T; Tokuhiro K; Nagamori E; Kitamoto K; Takahashi H
    Appl Biochem Biotechnol; 2006 Mar; 131(1-3):795-807. PubMed ID: 18563655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering of Saccharomyces cerevisiae for efficient production of pure L-(+)-lactic acid.
    Ishida N; Saitoh S; Ohnishi T; Tokuhiro K; Nagamori E; Kitamoto K; Takahashi H
    Appl Biochem Biotechnol; 2006; 129-132():795-807. PubMed ID: 16915689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deletion of JEN1 and ADY2 reduces lactic acid yield from an engineered Saccharomyces cerevisiae, in xylose medium, expressing a heterologous lactate dehydrogenase.
    Turner TL; Lane S; Jayakody LN; Zhang GC; Kim H; Cho W; Jin YS
    FEMS Yeast Res; 2019 Sep; 19(6):. PubMed ID: 31505595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient production of L-Lactic acid by metabolically engineered Saccharomyces cerevisiae with a genome-integrated L-lactate dehydrogenase gene.
    Ishida N; Saitoh S; Tokuhiro K; Nagamori E; Matsuyama T; Kitamoto K; Takahashi H
    Appl Environ Microbiol; 2005 Apr; 71(4):1964-70. PubMed ID: 15812027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of metabolic flux in Lactobacillus casei for lactic acid production by overexpressed ldhL gene with two-stage oxygen supply strategy.
    Ge XY; Xu Y; Chen X; Zhang LY
    J Microbiol Biotechnol; 2015 Jan; 25(1):81-8. PubMed ID: 25179900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cloning and nucleotide sequence of the Lactobacillus casei lactate dehydrogenase gene.
    Kim SF; Baek SJ; Pack MY
    Appl Environ Microbiol; 1991 Aug; 57(8):2413-7. PubMed ID: 1768113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic modeling and sensitivity analysis for higher ethanol production in self-cloning xylose-using Saccharomyces cerevisiae.
    Fukuda A; Kuriya Y; Konishi J; Mutaguchi K; Uemura T; Miura D; Okamoto M
    J Biosci Bioeng; 2019 May; 127(5):563-569. PubMed ID: 30482500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.