BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 7764517)

  • 1. Hydrolysis of S-2-aminoethylcysteinyl peptide bond by Achromobacter protease I.
    Masaki T; Takiya T; Tsunasawa S; Kuwahara S; Sakiyama F; Soejima M
    Biosci Biotechnol Biochem; 1994 Jan; 58(1):215-6. PubMed ID: 7764517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactivity of Lys(NH2)-containing peptides toward endopeptidases.
    Samson F; Bonnet D; Rommens C; Gras-Masse H; Melnyk O
    J Pept Sci; 1999 Aug; 5(8):352-9. PubMed ID: 10507684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The primary structure and structural characteristics of Achromobacter lyticus protease I, a lysine-specific serine protease.
    Tsunasawa S; Masaki T; Hirose M; Soejima M; Sakiyama F
    J Biol Chem; 1989 Mar; 264(7):3832-9. PubMed ID: 2492988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacteriolytic activity and specificity of Achromobacter beta-lytic protease.
    Li S; Norioka S; Sakiyama F
    J Biochem; 1998 Aug; 124(2):332-9. PubMed ID: 9685723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning, nucleotide sequence, and expression of Achromobacter protease I gene.
    Ohara T; Makino K; Shinagawa H; Nakata A; Norioka S; Sakiyama F
    J Biol Chem; 1989 Dec; 264(34):20625-31. PubMed ID: 2684982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of Achromobacter protease I by lysinal derivatives.
    Masaki T; Tanaka T; Tsunasawa S; Sakiyama F; Soejima M
    Biosci Biotechnol Biochem; 1992 Oct; 56(10):1604-7. PubMed ID: 1369061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of three catalytic triad constituents and Asp-225 essential for function of lysine-specific serine protease, Achromobacter protease I.
    Norioka S; Ohta S; Ohara T; Lim SI; Sakiyama F
    J Biol Chem; 1994 Jun; 269(25):17025-9. PubMed ID: 8006007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substrate specificities and inhibition of two hemorrhagic zinc proteases Ht-c and Ht-d from Crotalus atrox venom.
    Fox JW; Campbell R; Beggerly L; Bjarnason JB
    Eur J Biochem; 1986 Apr; 156(1):65-72. PubMed ID: 3514216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrate specificity of honeydew melon protease D, a plant serine endopeptidase.
    Yonezawa H; Uchikoba T; Kaneda M
    Biosci Biotechnol Biochem; 1997 Aug; 61(8):1277-80. PubMed ID: 9301107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human recombinant CuZn-superoxide dismutase. Amino acid sequence and location of the disulfide bond.
    Peretz M; Werber MU; Burstein Y
    Int J Pept Protein Res; 1991 Feb; 37(2):122-7. PubMed ID: 2019474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cysteine proteinase of Entamoeba histolytica. II. Identification of the major split position in bovine insulin B-chain.
    Scholze H; Otte J; Werries E
    Mol Biochem Parasitol; 1986 Jan; 18(1):113-21. PubMed ID: 2870431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endoproteolytic processing of a farnesylated peptide in vitro.
    Ashby MN; King DS; Rine J
    Proc Natl Acad Sci U S A; 1992 May; 89(10):4613-7. PubMed ID: 1584798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies on the peptide bond specificity and the essential groups of an acid proteinase from Aspergillus fumigatus.
    Panneerselvam M; Dhar SC
    Ital J Biochem; 1981; 30(3):207-16. PubMed ID: 7024192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Substrate specificity of Bacillus subtilis intracellular serine protease. Hydrolysis of insulin beta-chain, native ribonuclease A and p-nitroanilide peptide substrates].
    Markarian AN; Ostoslavskaia VI; Shviadas VK; Iakusheva LD; Liublinskaia LA
    Biokhimiia; 1980 Jul; 45(7):1319-28. PubMed ID: 6260244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatic semisynthesis of [LeuB30] insulin.
    Sakina K; Ueno Y; Oka T; Morihara K
    Int J Pept Protein Res; 1986 Oct; 28(4):411-9. PubMed ID: 3539841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro proteolytic activity and active-site identification of the human cytomegalovirus protease.
    Stevens JT; Mapelli C; Tsao J; Hail M; O'Boyle D; Weinheimer SP; Diianni CL
    Eur J Biochem; 1994 Dec; 226(2):361-7. PubMed ID: 8001553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specificity of the acid protease from Monascus kaoliang towards the B-chain of oxidized insulin.
    Hwang J; Hseu TH
    Biochim Biophys Acta; 1980 Aug; 614(2):607-12. PubMed ID: 6996736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and hydrolysis by cathepsin B of fluorogenic substrates with the general structure benzoyl-X-ARG-MCA containing non-natural basic amino acids at position X.
    Melo RL; Barbosa Pozzo RC; Alves LC; Perissutti E; Caliendo G; Santagada V; Juliano L; Juliano MA
    Biochim Biophys Acta; 2001 May; 1547(1):82-94. PubMed ID: 11343794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification, staphylolytic activity, and cleavage sites of alpha-lytic protease from Achromobacter lyticus.
    Li S; Norioka S; Sakiyama F
    J Biochem; 1997 Oct; 122(4):772-8. PubMed ID: 9399581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of an imidazole-indole stack to high catalytic potency of a lysine-specific serine protease, Achromobacter protease I.
    Shiraki K; Norioka S; Li S; Sakiyama F
    J Biochem; 2002 Feb; 131(2):213-8. PubMed ID: 11820934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.