These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 7764660)

  • 1. Epithelial properties of human intestinal Caco-2 cells cultured in a serum-free medium.
    Hashimoto K; Shimizu M
    Cytotechnology; 1993; 13(3):175-84. PubMed ID: 7764660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stabilization of the tight junction of the intestinal Caco-2 cell monolayer by milk whey proteins.
    Hashimoto K; Takeda K; Nakayama T; Shimizu M
    Biosci Biotechnol Biochem; 1995 Oct; 59(10):1951-2. PubMed ID: 8534990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insulin and IGE-1 receptors in a human intestinal adenocarcinoma cell line (CACO-2): regulation of Na+ glucose transport across the brush border.
    MacDonald RS; Thornton WH; Bean TL
    J Recept Res; 1993; 13(7):1093-113. PubMed ID: 8366505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Basal nutrition promotes human intestinal epithelial (Caco-2) proliferation, brush border enzyme activity, and motility.
    Perdikis DA; Basson MD
    Crit Care Med; 1997 Jan; 25(1):159-65. PubMed ID: 8989193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A primary culture model of rabbit conjunctival epithelial cells exhibiting tight barrier properties.
    Saha P; Kim KJ; Lee VH
    Curr Eye Res; 1996 Dec; 15(12):1163-9. PubMed ID: 9018430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epithelial properties of human colonic carcinoma cell line Caco-2: electrical parameters.
    Grasset E; Pinto M; Dussaulx E; Zweibaum A; Desjeux JF
    Am J Physiol; 1984 Sep; 247(3 Pt 1):C260-7. PubMed ID: 6476109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active hexose transport across cultured human Caco-2 cells: characterisation and influence of culture conditions.
    Riley SA; Warhurst G; Crowe PT; Turnberg LA
    Biochim Biophys Acta; 1991 Jul; 1066(2):175-82. PubMed ID: 1906749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transepithelial transport of bepridil in the human intestinal cell line, Caco-2, using two media, DMEMc and HBSS.
    Mathieu F; Galmier MJ; Pognat JF; Petit J; Lartigue C
    Int J Pharm; 1999 Apr; 181(2):203-17. PubMed ID: 10370216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Entamoeba histolytica interactions with polarized human intestinal Caco-2 epithelial cells.
    Li E; Stenson WF; Kunz-Jenkins C; Swanson PE; Duncan R; Stanley SL
    Infect Immun; 1994 Nov; 62(11):5112-9. PubMed ID: 7927794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport of the phosphonodipeptide alafosfalin by the H+/peptide cotransporters PEPT1 and PEPT2 in intestinal and renal epithelial cells.
    Neumann J; Bruch M; Gebauer S; Brandsch M
    Eur J Biochem; 2004 May; 271(10):2012-7. PubMed ID: 15128310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transepithelial glycylsarcosine transport in intestinal Caco-2 cells mediated by expression of H(+)-coupled carriers at both apical and basal membranes.
    Thwaites DT; Brown CD; Hirst BH; Simmons NL
    J Biol Chem; 1993 Apr; 268(11):7640-2. PubMed ID: 8463293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional Comparison of Human Colonic Carcinoma Cell Lines and Primary Small Intestinal Epithelial Cells for Investigations of Intestinal Drug Permeability and First-Pass Metabolism.
    Yamaura Y; Chapron BD; Wang Z; Himmelfarb J; Thummel KE
    Drug Metab Dispos; 2016 Mar; 44(3):329-35. PubMed ID: 26700954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epithelial cells in culture as a model for the intestinal transport of antimicrobial agents.
    Ranaldi G; Islam K; Sambuy Y
    Antimicrob Agents Chemother; 1992 Jul; 36(7):1374-81. PubMed ID: 1510430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Usefulness of a novel Caco-2 cell perfusion system. I. In vitro prediction of the absorption potential of passively diffused compounds.
    Masungi C; Borremans C; Willems B; Mensch J; Van Dijck A; Augustijns P; Brewster ME; Noppe M
    J Pharm Sci; 2004 Oct; 93(10):2507-21. PubMed ID: 15349960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efflux transporters and tight junction expression changes in human gastrointestinal cell lines cultured in defined medium vs serum supplemented medium.
    Warrier A; Gunosewoyo H; Crowe A
    Life Sci; 2018 Aug; 207():138-144. PubMed ID: 29857072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleotide uptake and metabolism by intestinal epithelial cells.
    Sanderson IR; He Y
    J Nutr; 1994 Jan; 124(1 Suppl):131S-137S. PubMed ID: 8283303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. All-trans retinoic acid enhances differentiation and influences permeability of intestinal Caco-2 cells under serum-free conditions.
    Baltes S; Nau H; Lampen A
    Dev Growth Differ; 2004 Dec; 46(6):503-14. PubMed ID: 15610140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro differentiated HT 29-D4 clonal cell line generates leakproof and electrically active monolayers when cultured in porous-bottom culture dishes.
    Fantini J; Verrier B; Marvaldi J; Mauchamp J
    Biol Cell; 1989; 65(2):163-9. PubMed ID: 2736330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport and metabolism of delta sleep-inducing peptide in cultured human intestinal epithelial cell monolayers.
    Augustijns PF; Borchardt RT
    Drug Metab Dispos; 1995 Dec; 23(12):1372-8. PubMed ID: 8689946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability.
    Hidalgo IJ; Raub TJ; Borchardt RT
    Gastroenterology; 1989 Mar; 96(3):736-49. PubMed ID: 2914637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.