These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 7764717)

  • 1. Catabolite repression and induction time effects for a temperature-sensitive GAL-regulated yeast expression system.
    Napp SJ; Da Silva NA
    J Biotechnol; 1994 Feb; 32(3):239-48. PubMed ID: 7764717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced productivity through gratuitous induction in recombinant yeast fermentations.
    Napp SJ; Da Silva NA
    Biotechnol Prog; 1994; 10(1):125-8. PubMed ID: 7764524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Galactose as a gratuitous inducer of GAL gene expression in yeasts growing on glucose.
    Hovland P; Flick J; Johnston M; Sclafani RA
    Gene; 1989 Nov; 83(1):57-64. PubMed ID: 2512199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recombinant protein production via fed-batch culture of the yeast Saccharomyces cerevisiae.
    Hardjito L; Greenfield PF; Lee PL
    Enzyme Microb Technol; 1993 Feb; 15(2):120-6. PubMed ID: 7763453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Regulation of beta-galactosidase synthesis in Escherichia coli by exogenous cyclic 3',5'-adenosine monophosphate].
    Kaliuzhnaia VM; Korobov VP
    Mikrobiologiia; 1991; 60(1):65-70. PubMed ID: 1654499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stability studies of recombinant Saccharomyces cerevisiae in the presence of varying selection pressure.
    Gupta JC; Mukherjee KJ
    Biotechnol Bioeng; 2002 Jun; 78(5):475-88. PubMed ID: 12115116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CreA-mediated carbon catabolite repression of beta-galactosidase formation in Aspergillus nidulans is growth rate dependent.
    Ilyés H; Fekete E; Karaffa L; Fekete E; Sándor E; Szentirmai A; Kubicek CP
    FEMS Microbiol Lett; 2004 Jun; 235(1):147-51. PubMed ID: 15158274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mathematical model of the lac operon: inducer exclusion, catabolite repression, and diauxic growth on glucose and lactose.
    Wong P; Gladney S; Keasling JD
    Biotechnol Prog; 1997; 13(2):132-43. PubMed ID: 9104037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of the regulator-gene product (repressor) in catabolite repression of beta-galactosidase synthesis in Escherichia coli.
    Palmer J; Moses V
    Biochem J; 1968 Jan; 106(2):339-43. PubMed ID: 4866428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A lowered concentration of cAMP receptor protein caused by glucose is an important determinant for catabolite repression in Escherichia coli.
    Ishizuka H; Hanamura A; Kunimura T; Aiba H
    Mol Microbiol; 1993 Oct; 10(2):341-50. PubMed ID: 7934825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catabolite repression of the lac operon. Separt epressionof two enzymes.
    Yudkin MD
    Biochem J; 1969 Sep; 114(2):313-9. PubMed ID: 4897463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glucose lowers CRP* levels resulting in repression of the lac operon in cells lacking cAMP.
    Tagami H; Inada T; Kunimura T; Aiba H
    Mol Microbiol; 1995 Jul; 17(2):251-8. PubMed ID: 7494474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulated expression of the GAL4 activator gene in yeast provides a sensitive genetic switch for glucose repression.
    Griggs DW; Johnston M
    Proc Natl Acad Sci U S A; 1991 Oct; 88(19):8597-601. PubMed ID: 1924319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CcpA-dependent and -independent control of beta-galactosidase expression in Streptococcus pneumoniae occurs via regulation of an upstream phosphotransferase system-encoding operon.
    Kaufman GE; Yother J
    J Bacteriol; 2007 Jul; 189(14):5183-92. PubMed ID: 17496092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catabolite repression of the lac operon. Effect of mutations in the lac promoter.
    Yudkin MD
    Biochem J; 1970 Aug; 118(5):741-6. PubMed ID: 4920388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tn917-lac mutagenesis of Streptococcus mutans to identify environmentally regulated genes.
    Cvitkovitch DG; Gutierrez JA; Behari J; Youngman PJ; Wetz JE; Crowley PJ; Hillman JD; Brady LJ; Bleiweis AS
    FEMS Microbiol Lett; 2000 Jan; 182(1):149-54. PubMed ID: 10612747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ assay for 5-aminolevulinate dehydratase and application to the study of a catabolite repression-resistant Saccharomyces cerevisiae mutant.
    Borralho LM; Panek AD; Malamud DR; Sanders HK; Mattoon JR
    J Bacteriol; 1983 Oct; 156(1):141-7. PubMed ID: 6352674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ty1-mediated integration of expression cassettes: host strain effects, stability, and product synthesis.
    Lee FW; Da Silva NA
    Biotechnol Prog; 1996; 12(4):548-54. PubMed ID: 8987481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitrogen catabolite repression of arginase (CAR1) expression in Saccharomyces cerevisiae is derived from regulated inducer exclusion.
    Cooper TG; Kovari L; Sumrada RA; Park HD; Luche RM; Kovari I
    J Bacteriol; 1992 Jan; 174(1):48-55. PubMed ID: 1729223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. THE RELATION OF CATABOLITE REPRESSION TO THE INDUCTION SYSTEM FOR BETA-GALACTOSIDASE IN ESCHERICHIA COLI.
    LOOMIS WF; MAGASANIK B
    J Mol Biol; 1964 Mar; 8():417-26. PubMed ID: 14168695
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.