These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 7764786)

  • 21. Identification of a novel mutation (Leu256-->Pro) in the human aldolase B gene associated with hereditary fructose intolerance.
    Ali M; Sebastio G; Cox TM
    Hum Mol Genet; 1994 Apr; 3(4):684. PubMed ID: 8069328
    [No Abstract]   [Full Text] [Related]  

  • 22. Development of an enzymatic process for manufacturing acrylamide and recent progress.
    Ashina Y; Suto M
    Bioprocess Technol; 1993; 16():91-107. PubMed ID: 7763351
    [No Abstract]   [Full Text] [Related]  

  • 23. Production of D-p-hydroxyphenylglycine by N-carbamoyl-D-amino acid amidohydrolase-overproducing Escherichia coli strains.
    Chao YP; Juang TY; Chern JT; Lee CK
    Biotechnol Prog; 1999; 15(4):603-7. PubMed ID: 10441350
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Contributions of recombinant microbes and their potential.
    Demain AL; Kimura A; Shinmyo A
    Bioprocess Technol; 1994; 19():27-46. PubMed ID: 7764762
    [No Abstract]   [Full Text] [Related]  

  • 25. Functional and molecular modelling studies of two hereditary fructose intolerance-causing mutations at arginine 303 in human liver aldolase.
    Santamaria R; Esposito G; Vitagliano L; Race V; Paglionico I; Zancan L; Zagari A; Salvatore F
    Biochem J; 2000 Sep; 350 Pt 3(Pt 3):823-8. PubMed ID: 10970798
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of arginine 331 as an important active site residue in the class II fructose-1,6-bisphosphate aldolase of Escherichia coli.
    Qamar S; Marsh K; Berry A
    Protein Sci; 1996 Jan; 5(1):154-61. PubMed ID: 8771208
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MJ0400 from Methanocaldococcus jannaschii exhibits fructose-1,6-bisphosphate aldolase activity.
    Samland AK; Wang M; Sprenger GA
    FEMS Microbiol Lett; 2008 Apr; 281(1):36-41. PubMed ID: 18318840
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of the molecular mechanisms involved in the differential production of erythrose-4-phosphate dehydrogenase, 3-phosphoglycerate kinase and class II fructose-1,6-bisphosphate aldolase in Escherichia coli.
    Bardey V; Vallet C; Robas N; Charpentier B; Thouvenot B; Mougin A; Hajnsdorf E; Régnier P; Springer M; Branlant C
    Mol Microbiol; 2005 Sep; 57(5):1265-87. PubMed ID: 16102000
    [TBL] [Abstract][Full Text] [Related]  

  • 29. One-step production of D-p-hydroxyphenylglycine by recombinant Escherichia coli strains.
    Chao YP; Fu H; Lo TE; Chen PT; Wang JJ
    Biotechnol Prog; 1999; 15(6):1039-45. PubMed ID: 10585187
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular cloning, expression, purification, and characterization of fructose 1,6-bisphosphate aldolase from Mycobacterium tuberculosis--a novel Class II A tetramer.
    Ramsaywak PC; Labbé G; Siemann S; Dmitrienko GI; Guillemette JG
    Protein Expr Purif; 2004 Sep; 37(1):220-8. PubMed ID: 15294302
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A developmental biological study of aldolase gene expression in Xenopus laevis.
    Shiokawa K; Kajita E; Hara H; Yatsuki H; Hori K
    Cell Res; 2002 Jun; 12(2):85-96. PubMed ID: 12118943
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Glycine metabolism in Candida albicans: characterization of the serine hydroxymethyltransferase (SHM1, SHM2) and threonine aldolase (GLY1) genes.
    McNeil JB; Flynn J; Tsao N; Monschau N; Stahmann K; Haynes RH; McIntosh EM; Pearlman RE
    Yeast; 2000 Jan; 16(2):167-75. PubMed ID: 10641038
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genetically engineered synthesis of natural products.
    Scott AI
    J Nat Prod; 1994 May; 57(5):557-73. PubMed ID: 8064290
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impact of Aspergillus oryzae genomics on industrial production of metabolites.
    Abe K; Gomi K; Hasegawa F; Machida M
    Mycopathologia; 2006 Sep; 162(3):143-53. PubMed ID: 16944282
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Amylolytic enzymes from hyperthermophiles.
    Bertoldo C; Antranikian G
    Methods Enzymol; 2001; 330():269-89. PubMed ID: 11210506
    [No Abstract]   [Full Text] [Related]  

  • 36. Human aldolase A natural mutants: relationship between flexibility of the C-terminal region and enzyme function.
    Esposito G; Vitagliano L; Costanzo P; Borrelli L; Barone R; Pavone L; Izzo P; Zagari A; Salvatore F
    Biochem J; 2004 May; 380(Pt 1):51-6. PubMed ID: 14766013
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Immobilization of enzymes by radiopolymerization of acrylamide.
    Kawashima K; Umeda K
    Biotechnol Bioeng; 1974 May; 16(5):609-21. PubMed ID: 4151503
    [No Abstract]   [Full Text] [Related]  

  • 38. [Endocrinology and recombinant DNA].
    Domínguez F; Tomé M; Muruais C; Alvarez C; Casanueva FF
    Rev Clin Esp; 1986 May; 178(9):455-8. PubMed ID: 3461506
    [No Abstract]   [Full Text] [Related]  

  • 39. Threonine production by microorganisms: a review.
    Bhattacharyya R; Das Y; Samanta TK; Mondal S; Chatterjee SP
    Hindustan Antibiot Bull; 1988; 30(3-4):54-65. PubMed ID: 3151369
    [No Abstract]   [Full Text] [Related]  

  • 40. Synthesis of poly(N-acetyl-beta-lactosaminide-carrying acrylamide): chemical-enzymatic hybrid process.
    Kobayashi K; Akaike T; Usui T
    Methods Enzymol; 1994; 242():226-35. PubMed ID: 7891579
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.