These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 7764794)
1. Increase in catalytic activity and thermostability of the xylanase A of Streptomyces lividans 1326 by site-specific mutagenesis. Moreau A; Shareck F; Kluepfel D; Morosoli R Enzyme Microb Technol; 1994 May; 16(5):420-4. PubMed ID: 7764794 [TBL] [Abstract][Full Text] [Related]
2. Alteration of the cleavage mode and of the transglycosylation reactions of the xylanase A of Streptomyces lividans 1326 by site-directed mutagenesis of the Asn173 residue. Moreau A; Shareck F; Kluepfel D; Morosoli R Eur J Biochem; 1994 Jan; 219(1-2):261-6. PubMed ID: 8306993 [TBL] [Abstract][Full Text] [Related]
3. Identification of two acidic residues involved in the catalysis of xylanase A from Streptomyces lividans. Moreau A; Roberge M; Manin C; Shareck F; Kluepfel D; Morosoli R Biochem J; 1994 Aug; 302 ( Pt 1)(Pt 1):291-5. PubMed ID: 7915112 [TBL] [Abstract][Full Text] [Related]
4. Site-directed mutagenesis study of a conserved residue in family 10 glycanases: histidine 86 of xylanase A from Streptomyces lividans. Roberge M; Shareck F; Morosoli R; Kluepfel D; Dupont C Protein Eng; 1998 May; 11(5):399-404. PubMed ID: 9681873 [TBL] [Abstract][Full Text] [Related]
5. Characterization of two important histidine residues in the active site of xylanase A from Streptomyces lividans, a family 10 glycanase. Roberge M; Shareck F; Morosoli R; Kluepfel D; Dupont C Biochemistry; 1997 Jun; 36(25):7769-75. PubMed ID: 9201919 [TBL] [Abstract][Full Text] [Related]
6. Improvement in thermostability of xylanase from Geobacillus thermodenitrificans C5 by site directed mutagenesis. Irfan M; Gonzalez CF; Raza S; Rafiq M; Hasan F; Khan S; Shah AA Enzyme Microb Technol; 2018 Apr; 111():38-47. PubMed ID: 29421035 [TBL] [Abstract][Full Text] [Related]
7. [Hydrophobic interaction between beta-sheet B1 and B2 in xylanase XYNB influencing the enzyme thermostability]. Yang HM; Yao B; Luo HY; Zhang WZ; Wang YR; Yuan TZ; Bai YG; Wu NF; Fan YL Sheng Wu Gong Cheng Xue Bao; 2005 May; 21(3):414-9. PubMed ID: 16108366 [TBL] [Abstract][Full Text] [Related]
8. Characterization of active-site aromatic residues in xylanase A from Streptomyces lividans. Roberge M; Shareck F; Morosoli R; Kluepfel D; Dupont C Protein Eng; 1999 Mar; 12(3):251-7. PubMed ID: 10235626 [TBL] [Abstract][Full Text] [Related]
9. Five mutations in N-terminus confer thermostability on mesophilic xylanase. Zhang S; Zhang K; Chen X; Chu X; Sun F; Dong Z Biochem Biophys Res Commun; 2010 Apr; 395(2):200-6. PubMed ID: 20361933 [TBL] [Abstract][Full Text] [Related]
10. An investigation of the nature and function of module 10 in a family F/10 xylanase FXYN of Streptomyces olivaceoviridis E-86 by module shuffling with the Cex of Cellulomonas fimi and by site-directed mutagenesis. Kaneko S; Kuno A; Fujimoto Z; Shimizu D; Machida S; Sato Y; Yura K; Go M; Mizuno H; Taira K; Kusakabe I; Hayashi K FEBS Lett; 1999 Oct; 460(1):61-6. PubMed ID: 10571062 [TBL] [Abstract][Full Text] [Related]
11. Improvement of thermostability of fungal xylanase by using site-directed mutagenesis. Sriprang R; Asano K; Gobsuk J; Tanapongpipat S; Champreda V; Eurwilaichitr L J Biotechnol; 2006 Dec; 126(4):454-62. PubMed ID: 16757052 [TBL] [Abstract][Full Text] [Related]
12. Increased xylanase yield in Streptomyces lividans: dependence on number of ribosome-binding sites. Pagé N; Kluepfel D; Shareck F; Morosoli R Nat Biotechnol; 1996 Jun; 14(6):756-9. PubMed ID: 9630985 [TBL] [Abstract][Full Text] [Related]
13. Purification and characterization of a new xylanase (xylanase B) produced by Streptomyces lividans 66. Kluepfel D; Vats-Mehta S; Aumont F; Shareck F; Morosoli R Biochem J; 1990 Apr; 267(1):45-50. PubMed ID: 2327987 [TBL] [Abstract][Full Text] [Related]
14. Role of the conserved amino acids of the 'SDN' loop (Ser130, Asp131 and Asn132) in a class A beta-lactamase studied by site-directed mutagenesis. Jacob F; Joris B; Lepage S; Dusart J; Frère JM Biochem J; 1990 Oct; 271(2):399-406. PubMed ID: 2173561 [TBL] [Abstract][Full Text] [Related]
15. Identification of essential amino acid residues for catalytic activity and thermostability of novel chitosanase by site-directed mutagenesis. Yoon HG; Kim HY; Lim YH; Kim HK; Shin DH; Hong BS; Cho HY Appl Microbiol Biotechnol; 2001 Jul; 56(1-2):173-80. PubMed ID: 11499927 [TBL] [Abstract][Full Text] [Related]
16. Probing the structural basis for the difference in thermostability displayed by family 10 xylanases. Xie H; Flint J; Vardakou M; Lakey JH; Lewis RJ; Gilbert HJ; Dumon C J Mol Biol; 2006 Jun; 360(1):157-67. PubMed ID: 16762367 [TBL] [Abstract][Full Text] [Related]
17. Isolation of a novel cold-active family 11 Xylanase from the filamentous fungus Bispora antennata and deletion of its N-terminal amino acids on thermostability. Liu Q; Wang Y; Luo H; Wang L; Shi P; Huang H; Yang P; Yao B Appl Biochem Biotechnol; 2015 Jan; 175(2):925-36. PubMed ID: 25351632 [TBL] [Abstract][Full Text] [Related]
18. GH30 Glucuronoxylan-Specific Xylanase from Streptomyces turgidiscabies C56. Maehara T; Yagi H; Sato T; Ohnishi-Kameyama M; Fujimoto Z; Kamino K; Kitamura Y; St John F; Yaoi K; Kaneko S Appl Environ Microbiol; 2018 Feb; 84(4):. PubMed ID: 29180367 [TBL] [Abstract][Full Text] [Related]
19. Significant enhancement in the binding of p-nitrophenyl-beta-D-xylobioside by the E128H mutant F/10 xylanase from Streptomyces olivaceoviridis E-86. Kuno A; Shimizu D; Kaneko S; Hasegawa T; Gama Y; Hayashi K; Kusakabe I; Taira K FEBS Lett; 1999 May; 450(3):299-305. PubMed ID: 10359093 [TBL] [Abstract][Full Text] [Related]
20. Site-directed mutagenesis of GH10 xylanase A from Penicillium canescens for determining factors affecting the enzyme thermostability. Denisenko YA; Gusakov AV; Rozhkova AM; Osipov DO; Zorov IN; Matys VY; Uporov IV; Sinitsyn AP Int J Biol Macromol; 2017 Nov; 104(Pt A):665-671. PubMed ID: 28634062 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]