These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 7764794)
21. Impact of the removal of N-terminal non-structured amino acids on activity and stability of xylanases from Orpinomyces sp. PC-2. Ventorim RZ; de Oliveira Mendes TA; Trevizano LM; Dos Santos Camargos AM; Guimarães VM Int J Biol Macromol; 2018 Jan; 106():312-319. PubMed ID: 28782612 [TBL] [Abstract][Full Text] [Related]
22. Thermostability improvement of a streptomyces xylanase by introducing proline and glutamic acid residues. Wang K; Luo H; Tian J; Turunen O; Huang H; Shi P; Hua H; Wang C; Wang S; Yao B Appl Environ Microbiol; 2014 Apr; 80(7):2158-65. PubMed ID: 24463976 [TBL] [Abstract][Full Text] [Related]
23. Enhancement of the thermostability of Streptomyces kathirae SC-1 tyrosinase by rational design and empirical mutation. Guo J; Rao Z; Yang T; Man Z; Xu M; Zhang X; Yang ST Enzyme Microb Technol; 2015 Sep; 77():54-60. PubMed ID: 26138400 [TBL] [Abstract][Full Text] [Related]
24. Asparagine-127 of xylanase A from Streptomyces lividans, a key residue in glycosyl hydrolases of superfamily 4/7: kinetic evidence for its involvement in stabilization of the catalytic intermediate. Roberge M; Dupont C; Morosoli R; Shareck F; Kluepfel D Protein Eng; 1997 Apr; 10(4):399-403. PubMed ID: 9194164 [TBL] [Abstract][Full Text] [Related]
25. The disruption of two salt bridges of the cold-active xylanase XynGR40 results in an increase in activity, but a decrease in thermostability. Wang G; Wu J; Lin J; Ye X; Yao B Biochem Biophys Res Commun; 2016 Dec; 481(1-2):139-145. PubMed ID: 27816456 [TBL] [Abstract][Full Text] [Related]
26. Improving the thermostability of Geobacillus stearothermophilus xylanase XT6 by directed evolution and site-directed mutagenesis. Zhang ZG; Yi ZL; Pei XQ; Wu ZL Bioresour Technol; 2010 Dec; 101(23):9272-8. PubMed ID: 20691586 [TBL] [Abstract][Full Text] [Related]
27. A xylanase with high pH stability from Streptomyces sp. S27 and its carbohydrate-binding module with/without linker-region-truncated versions. Li N; Shi P; Yang P; Wang Y; Luo H; Bai Y; Zhou Z; Yao B Appl Microbiol Biotechnol; 2009 May; 83(1):99-107. PubMed ID: 19107475 [TBL] [Abstract][Full Text] [Related]
28. Engineering a high-performance, metagenomic-derived novel xylanase with improved soluble protein yield and thermostability. Qian C; Liu N; Yan X; Wang Q; Zhou Z; Wang Q Enzyme Microb Technol; 2015 Mar; 70():35-41. PubMed ID: 25659630 [TBL] [Abstract][Full Text] [Related]
29. Single mutations of residues outside the active center of the xylanase Xys1 Delta from Streptomyces halstedii JM8 affect its activity. Díaz M; Rodriguez S; Fernández-Abalos JM; De Las Rivas J; Ruiz-Arribas A; Shnyrov VL; Santamaría RI FEMS Microbiol Lett; 2004 Nov; 240(2):237-43. PubMed ID: 15522513 [TBL] [Abstract][Full Text] [Related]
30. [Improvement of the thermostability of xylanase by N-terminus replacement]. Yang HM; Meng K; Luo HY; Wang YR; Yuan TZ; Bai YG; Yao B; Fan YL Sheng Wu Gong Cheng Xue Bao; 2006 Jan; 22(1):26-32. PubMed ID: 16572836 [TBL] [Abstract][Full Text] [Related]
31. Distinct roles for carbohydrate-binding modules of glycoside hydrolase 10 (GH10) and GH11 xylanases from Caldicellulosiruptor sp. strain F32 in thermostability and catalytic efficiency. Meng DD; Ying Y; Chen XH; Lu M; Ning K; Wang LS; Li FL Appl Environ Microbiol; 2015 Mar; 81(6):2006-14. PubMed ID: 25576604 [TBL] [Abstract][Full Text] [Related]
32. Construction of Thermophilic Xylanase and Its Structural Analysis. Watanabe M; Fukada H; Ishikawa K Biochemistry; 2016 Aug; 55(31):4399-409. PubMed ID: 27410423 [TBL] [Abstract][Full Text] [Related]
33. Purification and characterization of an alpha-L-arabinofuranosidase from Streptomyces lividans 66 and DNA sequence of the gene (abfA). Manin C; Shareek F; Morosoli R; Kluepfel D Biochem J; 1994 Sep; 302 ( Pt 2)(Pt 2):443-9. PubMed ID: 8092996 [TBL] [Abstract][Full Text] [Related]
34. Importance of C-terminal region for thermostability of GH11 xylanase from Streptomyces lividans. Wang Q; Xia T Appl Biochem Biotechnol; 2008 Mar; 144(3):273-82. PubMed ID: 18556816 [TBL] [Abstract][Full Text] [Related]
35. Improving the alkalophilic performances of the Xyl1 xylanase from Streptomyces sp. S38: structural comparison and mutational analysis. De Lemos Esteves F; Gouders T; Lamotte-Brasseur J; Rigali S; Frère JM Protein Sci; 2005 Feb; 14(2):292-302. PubMed ID: 15659364 [TBL] [Abstract][Full Text] [Related]
36. Amino acid substitutions in the N-terminus, cord and α-helix domains improved the thermostability of a family 11 xylanase XynR8. Xue H; Zhou J; You C; Huang Q; Lu H J Ind Microbiol Biotechnol; 2012 Sep; 39(9):1279-88. PubMed ID: 22584821 [TBL] [Abstract][Full Text] [Related]
37. Acidophilic adaptation of family 11 endo-beta-1,4-xylanases: modeling and mutational analysis. de Lemos Esteves F; Ruelle V; Lamotte-Brasseur J; Quinting B; Frère JM Protein Sci; 2004 May; 13(5):1209-18. PubMed ID: 15096627 [TBL] [Abstract][Full Text] [Related]
38. Engineering a xylanase from Streptomyce rochei L10904 by mutation to improve its catalytic characteristics. Li Q; Sun B; Jia H; Hou J; Yang R; Xiong K; Xu Y; Li X Int J Biol Macromol; 2017 Aug; 101():366-372. PubMed ID: 28356235 [TBL] [Abstract][Full Text] [Related]
39. A mutant phospholipase D with enhanced thermostability from Streptomyces sp. Hatanaka T; Negishi T; Mori K Biochim Biophys Acta; 2004 Jan; 1696(1):75-82. PubMed ID: 14726207 [TBL] [Abstract][Full Text] [Related]
40. A single amino acid substitution enhances the catalytic activity of family 11 xylanase at alkaline pH. Shibuya H; Kaneko S; Hayashi K Biosci Biotechnol Biochem; 2005 Aug; 69(8):1492-7. PubMed ID: 16116276 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]