These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 7764902)

  • 21. Fluorescent chelates for monitoring metal binding with macromolecules.
    Islam M; Khanin M; Sadik OA
    Biomacromolecules; 2003; 4(1):114-21. PubMed ID: 12523855
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A highly DNA-duplex-stabilizing metal-salen base pair.
    Clever GH; Polborn K; Carell T
    Angew Chem Int Ed Engl; 2005 Nov; 44(44):7204-8. PubMed ID: 16231380
    [No Abstract]   [Full Text] [Related]  

  • 23. Chelation-mediated aqueous synthesis of metal oxyhydroxide and oxide nanostructures: combination of ligand-controlled oxidation and ligand-cooperative morphogenesis.
    Oaki Y; Imai H
    Chemistry; 2007; 13(30):8564-71. PubMed ID: 17659662
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metals in proteins: correlation between the metal-ion type, coordination number and the amino-acid residues involved in the coordination.
    Dokmanić I; Sikić M; Tomić S
    Acta Crystallogr D Biol Crystallogr; 2008 Mar; 64(Pt 3):257-63. PubMed ID: 18323620
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chelating ligand conformation driving the hypoxanthine metal binding patterns.
    Patel DK; Choquesillo-Lazarte D; Domínguez-Martín A; Brandi-Blanco MP; González-Pérez JM; Castiñeiras A; Niclós-Gutiérrez J
    Inorg Chem; 2011 Nov; 50(21):10549-51. PubMed ID: 21995280
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Elucidation of primary (alpha(3)N) and vestigial (alpha(5)) heavy metal-binding sites in Staphylococcus aureus pI258 CadC: evolutionary implications for metal ion selectivity of ArsR/SmtB metal sensor proteins.
    Busenlehner LS; Weng TC; Penner-Hahn JE; Giedroc DP
    J Mol Biol; 2002 Jun; 319(3):685-701. PubMed ID: 12054863
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural insights into protein-metal ion partnerships.
    Barondeau DP; Getzoff ED
    Curr Opin Struct Biol; 2004 Dec; 14(6):765-74. PubMed ID: 15582401
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Site selection in tandem arrays of metal-binding domains.
    Thickman KR; Davis A; Berg JM
    Inorg Chem; 2004 Dec; 43(25):7897-901. PubMed ID: 15578823
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stimulus-Responsive Prochelators for Manipulating Cellular Metals.
    Wang Q; Franz KJ
    Acc Chem Res; 2016 Nov; 49(11):2468-2477. PubMed ID: 27749047
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The chelation targeting metal-Aβ40 aggregates may lead to formation of Aβ40 oligomers.
    Zhang Y; Chen LY; Yin WX; Yin J; Zhang SB; Liu CL
    Dalton Trans; 2011 May; 40(18):4830-3. PubMed ID: 21437337
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Studies on inhibition mechanism of transcription factor NF-kappaB and DNA binding by chelator pyrogallol red on the basis of its interaction with metal ions.
    Sharma RK; Chelladurai C; Tiwari AD; Rajor HK; Mehta S; Otsuka M
    Bioorg Med Chem; 2008 Oct; 16(19):9018-22. PubMed ID: 18801661
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Poly(L-cysteine) as an electrochemically modifiable ligand for trace metal chelation.
    Johnson AM; Holcombe JA
    Anal Chem; 2005 Jan; 77(1):30-5. PubMed ID: 15623275
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transition-metal catalysis as a tool for the covalent labeling of proteins.
    van Maarseveen JH; Reek JN; Back JW
    Angew Chem Int Ed Engl; 2006 Mar; 45(12):1841-3. PubMed ID: 16493720
    [No Abstract]   [Full Text] [Related]  

  • 34. [Stabilization of a protein by constructing a ligand binding site].
    Kuroki R; Inaka K
    Tanpakushitsu Kakusan Koso; 1992 Feb; 37(3 Suppl):314-21. PubMed ID: 1549710
    [No Abstract]   [Full Text] [Related]  

  • 35. Decelerated chirality interconversion of an optically inactive 3(10)-helical peptide by metal chelation.
    Ousaka N; Tani N; Sekiya R; Kuroda R
    Chem Commun (Camb); 2008 Jul; (25):2894-6. PubMed ID: 18566716
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modeling of metal interaction geometries for protein-ligand docking.
    Seebeck B; Reulecke I; Kämper A; Rarey M
    Proteins; 2008 May; 71(3):1237-54. PubMed ID: 18041759
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of the metal binding properties of the histidine-rich antimicrobial peptides histatin 3 and 5 by electrospray ionization mass spectrometry.
    Brewer D; Lajoie G
    Rapid Commun Mass Spectrom; 2000; 14(19):1736-45. PubMed ID: 11006580
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metal-chelate affinity precipitation of proteins using responsive polymers.
    Mattiasson B; Kumar A; Ivanov AE; Galaev IY
    Nat Protoc; 2007; 2(1):213-20. PubMed ID: 17401356
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineered metal binding sites map the heterogeneous folding landscape of a coiled coil.
    Krantz BA; Sosnick TR
    Nat Struct Biol; 2001 Dec; 8(12):1042-7. PubMed ID: 11694889
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular dynamics study on the folding and metallation of the individual domains of metallothionein.
    Rigby KE; Chan J; Mackie J; Stillman MJ
    Proteins; 2006 Jan; 62(1):159-72. PubMed ID: 16288454
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.