BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 7764962)

  • 1. Immobilization of chitinase on a reversibly soluble-insoluble polymer for chitin hydrolysis.
    Chen JP; Chang KC
    J Chem Technol Biotechnol; 1994 Jun; 60(2):133-40. PubMed ID: 7764962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immobilization of cellulase on a reversibly soluble-insoluble support: properties and application.
    Zhou J
    J Agric Food Chem; 2010 Jun; 58(11):6741-6. PubMed ID: 20459124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzyme activity determination on macromolecular substrates by isothermal titration calorimetry: application to mesophilic and psychrophilic chitinases.
    Lonhienne T; Baise E; Feller G; Bouriotis V; Gerday C
    Biochim Biophys Acta; 2001 Feb; 1545(1-2):349-56. PubMed ID: 11342059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Importance of exposed aromatic residues in chitinase B from Serratia marcescens 2170 for crystalline chitin hydrolysis.
    Katouno F; Taguchi M; Sakurai K; Uchiyama T; Nikaidou N; Nonaka T; Sugiyama J; Watanabe T
    J Biochem; 2004 Aug; 136(2):163-8. PubMed ID: 15496586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physicochemical study of a novel chimeric chitinase with enhanced binding ability.
    Matroodi S; Zamani M; Haghbeen K; Motallebi M; Aminzadeh S
    Acta Biochim Biophys Sin (Shanghai); 2013 Oct; 45(10):845-56. PubMed ID: 23979812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Roles of the exposed aromatic residues in crystalline chitin hydrolysis by chitinase A from Serratia marcescens 2170.
    Uchiyama T; Katouno F; Nikaidou N; Nonaka T; Sugiyama J; Watanabe T
    J Biol Chem; 2001 Nov; 276(44):41343-9. PubMed ID: 11522778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Chitinase from Serratia marcescens BKM B-851].
    Chigaleĭchik AG; Pirieva DA; Rydkin SS
    Prikl Biokhim Mikrobiol; 1976; 12(4):581-6. PubMed ID: 800258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Slow Off-rates and Strong Product Binding Are Required for Processivity and Efficient Degradation of Recalcitrant Chitin by Family 18 Chitinases.
    Kurašin M; Kuusk S; Kuusk P; Sørlie M; Väljamäe P
    J Biol Chem; 2015 Nov; 290(48):29074-85. PubMed ID: 26468285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of C-terminal domain truncation on enzyme properties of Serratia marcescens chitinase C.
    Lin FP; Wu CY; Chen HN; Lin HJ
    Appl Biochem Biotechnol; 2015 Apr; 175(8):3617-27. PubMed ID: 25820357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immobilization of Candida rugosa lipase on a pH-sensitive support for enantioselective hydrolysis of ketoprofen ester.
    Zhu S; Wu Y; Yu Z
    J Biotechnol; 2005 Apr; 116(4):397-401. PubMed ID: 15748766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Family 18 chitinase-oligosaccharide substrate interaction: subsite preference and anomer selectivity of Serratia marcescens chitinase A.
    Aronson NN; Halloran BA; Alexyev MF; Amable L; Madura JD; Pasupulati L; Worth C; Van Roey P
    Biochem J; 2003 Nov; 376(Pt 1):87-95. PubMed ID: 12932195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxazoline or Oxazolinium Ion? The Protonation State and Conformation of the Reaction Intermediate of Chitinase Enzymes Revisited.
    Coines J; Alfonso-Prieto M; Biarnés X; Planas A; Rovira C
    Chemistry; 2018 Dec; 24(72):19258-19265. PubMed ID: 30276896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The chitinolytic machinery of Serratia marcescens--a model system for enzymatic degradation of recalcitrant polysaccharides.
    Vaaje-Kolstad G; Horn SJ; Sørlie M; Eijsink VG
    FEBS J; 2013 Jul; 280(13):3028-49. PubMed ID: 23398882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polarized light-stimulated enzymatic hydrolysis of chitin and chitosan.
    Konieczna-Molenda A; Fiedorowicz M; Zhong W; Tomasik P
    Carbohydr Res; 2008 Dec; 343(18):3117-9. PubMed ID: 18823881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel method for the immobilization of a thermostable fungal chitinase and the properties of the immobilized enzyme.
    Prasad M; Palanivelu P
    Biotechnol Appl Biochem; 2014; 61(4):441-5. PubMed ID: 24237246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Covalent immobilization of cellulases onto a water-soluble-insoluble reversible polymer.
    Yu Y; Yuan J; Wang Q; Fan X; Wang P
    Appl Biochem Biotechnol; 2012 Mar; 166(6):1433-41. PubMed ID: 22249855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzyme processivity changes with the extent of recalcitrant polysaccharide degradation.
    Hamre AG; Lorentzen SB; Väljamäe P; Sørlie M
    FEBS Lett; 2014 Dec; 588(24):4620-4. PubMed ID: 25447535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chitinase activity on amorphous chitin thin films: a quartz crystal microbalance with dissipation monitoring and atomic force microscopy study.
    Wang C; Kittle JD; Qian C; Roman M; Esker AR
    Biomacromolecules; 2013 Aug; 14(8):2622-8. PubMed ID: 23822524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular directionality in crystalline beta-chitin: hydrolysis by chitinases A and B from Serratia marcescens 2170.
    Hult EL; Katouno F; Uchiyama T; Watanabe T; Sugiyama J
    Biochem J; 2005 Jun; 388(Pt 3):851-6. PubMed ID: 15717865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chitinase-catalyzed synthesis of alternatingly N-deacetylated chitin: a chitin-chitosan hybrid polysaccharide.
    Makino A; Kurosaki K; Ohmae M; Kobayashi S
    Biomacromolecules; 2006 Mar; 7(3):950-7. PubMed ID: 16529436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.