These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 7765064)

  • 1. Protein structure modelling from remote sequence similarity.
    Taylor WR
    J Biotechnol; 1994 Jun; 35(2-3):281-91. PubMed ID: 7765064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PdbAlign, PdbDist and DistAlign: tools to aid in relating sequence variability to structure.
    Sayle R; Saqi M; Weir M; Lyall A
    Comput Appl Biosci; 1995 Oct; 11(5):571-3. PubMed ID: 8590183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An evaluation of automated homology modelling methods at low target template sequence similarity.
    Dalton JA; Jackson RM
    Bioinformatics; 2007 Aug; 23(15):1901-8. PubMed ID: 17510171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In silico protein recombination: enhancing template and sequence alignment selection for comparative protein modelling.
    Contreras-Moreira B; Fitzjohn PW; Bates PA
    J Mol Biol; 2003 May; 328(3):593-608. PubMed ID: 12706719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence variations within protein families are linearly related to structural variations.
    Koehl P; Levitt M
    J Mol Biol; 2002 Oct; 323(3):551-62. PubMed ID: 12381308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Secondary structure prediction for modelling by homology.
    Boscott PE; Barton GJ; Richards WG
    Protein Eng; 1993 Apr; 6(3):261-6. PubMed ID: 8506260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural insights into the South African HIV-1 subtype C protease: impact of hinge region dynamics and flap flexibility in drug resistance.
    Naicker P; Achilonu I; Fanucchi S; Fernandes M; Ibrahim MA; Dirr HW; Soliman ME; Sayed Y
    J Biomol Struct Dyn; 2013 Dec; 31(12):1370-80. PubMed ID: 23140382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated homology modelling and X-ray study of herpes simplex virus I thymidine kinase: a case study.
    Folkers G; Alber F; Amrhein I; Behrends H; Bohner T; Gerber S; Kuonen O; Scapozza L
    J Recept Signal Transduct Res; 1997; 17(1-3):475-94. PubMed ID: 9029509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein structure prediction based on sequence similarity.
    Jaroszewski L
    Methods Mol Biol; 2009; 569():129-56. PubMed ID: 19623489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein structure prediction.
    Garnier J
    Biochimie; 1990 Aug; 72(8):513-24. PubMed ID: 2126456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein structure prediction of CASP5 comparative modeling and fold recognition targets using consensus alignment approach and 3D assessment.
    Ginalski K; Rychlewski L
    Proteins; 2003; 53 Suppl 6():410-7. PubMed ID: 14579329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How inaccuracies in protein structure models affect estimates of protein-ligand interactions: computational analysis of HIV-I protease inhibitor binding.
    Thorsteinsdottir HB; Schwede T; Zoete V; Meuwly M
    Proteins; 2006 Nov; 65(2):407-23. PubMed ID: 16941468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural characterization of B and non-B subtypes of HIV-protease: insights into the natural susceptibility to drug resistance development.
    Sanches M; Krauchenco S; Martins NH; Gustchina A; Wlodawer A; Polikarpov I
    J Mol Biol; 2007 Jun; 369(4):1029-40. PubMed ID: 17467738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ddi1, a eukaryotic protein with the retroviral protease fold.
    Sirkis R; Gerst JE; Fass D
    J Mol Biol; 2006 Dec; 364(3):376-87. PubMed ID: 17010377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incremental threading optimization (TITO) to help alignment and modelling of remote homologues.
    Labesse G; Mornon J
    Bioinformatics; 1998; 14(2):206-11. PubMed ID: 9545453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein structure prediction begins well but ends badly.
    Saunders R; Deane CM
    Proteins; 2010 Apr; 78(5):1282-90. PubMed ID: 20014025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inverse sequence similarity in proteins and its relation to the three-dimensional fold.
    Preissner R; Goede A; Michalski E; Frömmel C
    FEBS Lett; 1997 Sep; 414(2):425-9. PubMed ID: 9315733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of human SH3BGRL protein: the first structure of the human SH3BGR family representing a novel class of thioredoxin fold proteins.
    Yin L; Xiang Y; Zhu DY; Yan N; Huang RH; Zhang Y; Wang DC
    Proteins; 2005 Oct; 61(1):213-6. PubMed ID: 16080146
    [No Abstract]   [Full Text] [Related]  

  • 19. Homology modeling of histidine-containing phosphocarrier protein and eosinophil-derived neurotoxin: construction of models and comparison with experiment.
    Church WB; Palmer A; Wathey JC; Kitson DH
    Proteins; 1995 Nov; 23(3):422-30. PubMed ID: 8710835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PATSIM: Prediction and analysis of protein sequences using hybrid Knuth-Morris Pratt (KMP) and Boyer-Moore (BM) algorithm.
    Manikandan P; Ramyachitra D
    Gene; 2018 May; 657():50-59. PubMed ID: 29501620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.