These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 7765125)

  • 61. The chsD and chsE genes of Aspergillus nidulans and their roles in chitin synthesis.
    Specht CA; Liu Y; Robbins PW; Bulawa CE; Iartchouk N; Winter KR; Riggle PJ; Rhodes JC; Dodge CL; Culp DW; Borgia PT
    Fungal Genet Biol; 1996 Jun; 20(2):153-67. PubMed ID: 8810520
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A global view of metabolites.
    Schardl CL
    Chem Biol; 2006 Jan; 13(1):5-6. PubMed ID: 16426964
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Transcriptional control of gluconeogenesis in Aspergillus nidulans.
    Hynes MJ; Szewczyk E; Murray SL; Suzuki Y; Davis MA; Sealy-Lewis HM
    Genetics; 2007 May; 176(1):139-50. PubMed ID: 17339216
    [TBL] [Abstract][Full Text] [Related]  

  • 64. sodVIC is an alpha-COP-related gene which is essential for establishing and maintaining polarized growth in Aspergillus nidulans.
    Whittaker SL; Lunness P; Milward KJ; Doonan JH; Assinder SJ
    Fungal Genet Biol; 1999 Apr; 26(3):236-52. PubMed ID: 10361037
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Evaluation of shikimic acid as a precursor of pyocyanine.
    Ingledew WM; Campbell JJ
    Can J Microbiol; 1969 Jun; 15(6):535-41. PubMed ID: 4978987
    [No Abstract]   [Full Text] [Related]  

  • 66. Identification and isolation of a putative permease gene in the quinic acid utilization (QUT) gene cluster of Aspergillus nidulans.
    Whittington HA; Grant S; Roberts CF; Lamb H; Hawkins AR
    Curr Genet; 1987; 12(2):135-9. PubMed ID: 2835177
    [TBL] [Abstract][Full Text] [Related]  

  • 67. (-)-3t,4t-Dihydroxycyclohexane-1c-carboxylate, a new quinate metabolite of Lactobacillus plantarum.
    Whiting GC; Coggins RA
    J Sci Food Agric; 1973 Aug; 24(8):897-904. PubMed ID: 4731349
    [No Abstract]   [Full Text] [Related]  

  • 68. The metabolism of quinate by Acinetobacter calco-aceticus.
    Tresguerres ME; De Torrontegui G; Cánovas JL
    Arch Mikrobiol; 1970; 70(2):110-8. PubMed ID: 5429630
    [No Abstract]   [Full Text] [Related]  

  • 69. Mutations in genes encoding sorting nexins alter production of intracellular and extracellular proteases in Aspergillus nidulans.
    Katz ME; Evans CJ; Heagney EE; vanKuyk PA; Kelly JM; Cheetham BF
    Genetics; 2009 Apr; 181(4):1239-47. PubMed ID: 19204378
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The production of an N-acylanthranilic acid from shikimic acid and the effect on iron deficiency on the biosynthesis of other aromatic compounds by Aerobacter aerogenes.
    Ratledge C
    Biochim Biophys Acta; 1967 Jun; 141(1):55-63. PubMed ID: 6051584
    [No Abstract]   [Full Text] [Related]  

  • 71. Molecular biological and biochemical aspects of fungal dimorphism.
    Cannon RD; Timberlake WE; Gow NA; Bailey D; Brown A; Gooday GW; Hube B; Monod M; Nombela C; Navarro F
    J Med Vet Mycol; 1994; 32 Suppl 1():53-64. PubMed ID: 7722802
    [No Abstract]   [Full Text] [Related]  

  • 72. Nutritional response to feeding L-phenyllactic, shikimic and D-quinic acids in weanling rats.
    Seifter E; Rettura G; Reissman D; Kambosos D; Levenson SM
    J Nutr; 1971 Jun; 101(6):747-54. PubMed ID: 5103847
    [No Abstract]   [Full Text] [Related]  

  • 73. Genetic mapping and complementation of aromatic mutants in Streptomyces coelicolor A3(2).
    Engel PP; Watkins CA
    Can J Microbiol; 1974 Dec; 20(12):1695-700. PubMed ID: 4441981
    [No Abstract]   [Full Text] [Related]  

  • 74. A new resuspension medium for pyocyanine production.
    Ingledew WM; Campbell JJ
    Can J Microbiol; 1969 Jun; 15(6):595-8. PubMed ID: 4978988
    [No Abstract]   [Full Text] [Related]  

  • 75. Aromatic amino acid biosynthesis in Trichophyton rubrum. 3. Exogenous studies: absence of the shikimic acid pathway.
    Zussman RA; Vicher EE; Lyon I
    Mycopathol Mycol Appl; 1970 Dec; 42(1):1-8. PubMed ID: 4924905
    [No Abstract]   [Full Text] [Related]  

  • 76. The genetic control of dissimilatory pathways in Pseudomonas putida.
    Wheelis ML; Stanier RY
    Genetics; 1970 Oct; 66(2):245-66. PubMed ID: 5525301
    [No Abstract]   [Full Text] [Related]  

  • 77. An enzymatic route to sunscreens.
    Schmidt EW
    Chembiochem; 2011 Feb; 12(3):363-5. PubMed ID: 21290533
    [No Abstract]   [Full Text] [Related]  

  • 78. Regulation of the enzymes of the beta-ketoadipate pathway in Moraxella. Control of quinate oxidation by protocatechuate.
    Tresguerres ME; de Torrontegui G; Ingledew WM; Cánovas JL
    Eur J Biochem; 1970 Jul; 14(3):445-50. PubMed ID: 5479375
    [No Abstract]   [Full Text] [Related]  

  • 79. The shikimate pathway--a metabolic tree with many branches.
    Bentley R
    Crit Rev Biochem Mol Biol; 1990; 25(5):307-84. PubMed ID: 2279393
    [No Abstract]   [Full Text] [Related]  

  • 80. QuiC2 represents a functionally distinct class of dehydroshikimate dehydratases identified in Listeria species including Listeria monocytogenes.
    Xue K; Prezioso SM; Christendat D
    Environ Microbiol; 2020 Jul; 22(7):2680-2692. PubMed ID: 32190965
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.