These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 7765133)

  • 21. Carbon catabolite repression in the regulation of beta-galactosidase activity in Aspergillus nidulans.
    Karaffa L; Fekete E; Sándor E; Sepsi A; Seiboth B; Szentirmai A; Kubicek CP
    Acta Microbiol Immunol Hung; 2002; 49(2-3):261-5. PubMed ID: 12109156
    [No Abstract]   [Full Text] [Related]  

  • 22. Transcription analysis using high-density micro-arrays of Aspergillus nidulans wild-type and creA mutant during growth on glucose or ethanol.
    Mogensen J; Nielsen HB; Hofmann G; Nielsen J
    Fungal Genet Biol; 2006 Aug; 43(8):593-603. PubMed ID: 16698295
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aspergillus nidulans DigA, a potential homolog of Saccharomyces cerevisiae Pep3 (Vps18), is required for nuclear migration, mitochondrial morphology and polarized growth.
    Geissenhöner A; Sievers N; Brock M; Fischer R
    Mol Genet Genomics; 2001 Dec; 266(4):672-85. PubMed ID: 11810240
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rescue of yeast defective in mitochondrial ATP synthase subunit 8 by a heterologous gene from Aspergillus nidulans.
    Straffon AF; Nagley P; Devenish RJ
    Biochem Biophys Res Commun; 1994 Sep; 203(3):1567-73. PubMed ID: 7945306
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The essential Aspergillus nidulans gene pmaA encodes an homologue of fungal plasma membrane H(+)-ATPases.
    Reoyo E; Espeso EA; Peñalva MA; Suárez T
    Fungal Genet Biol; 1998 Apr; 23(3):288-99. PubMed ID: 9680959
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cloning of the creA gene from Aspergillus nidulans: a gene involved in carbon catabolite repression.
    Dowzer CE; Kelly JM
    Curr Genet; 1989 Jun; 15(6):457-9. PubMed ID: 2673558
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Carbon catabolite repression can account for the temporal pattern of expression of a penicillin biosynthetic gene in Aspergillus nidulans.
    Espeso EA; Peñalva MA
    Mol Microbiol; 1992 Jun; 6(11):1457-65. PubMed ID: 1625576
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A carbon-source-responsive element is required for regulation of the hypoxic ADP/ATP carrier (AAC3) isoform in Saccharomyces cerevisiae.
    Sokolíková B; Sabová L; Kissová I; Kolarov J
    Biochem J; 2000 Dec; 352 Pt 3(Pt 3):893-8. PubMed ID: 11104700
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular mechanism of the multiple regulation of the Saccharomyces cerevisiae ATF1 gene encoding alcohol acetyltransferase.
    Fujiwara D; Kobayashi O; Yoshimoto H; Harashima S; Tamai Y
    Yeast; 1999 Sep; 15(12):1183-97. PubMed ID: 10487921
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inorganic nitrogen assimilation: molecular aspects.
    Kinghorn JR; Unkles SE
    Prog Ind Microbiol; 1994; 29():181-94. PubMed ID: 7765124
    [No Abstract]   [Full Text] [Related]  

  • 31. Molecular cloning and expression in Saccharomyces cerevisiae of two Aspergillus nidulans xylanase genes.
    Pérez-Gonzalez JA; De Graaff LH; Visser J; Ramón D
    Appl Environ Microbiol; 1996 Jun; 62(6):2179-82. PubMed ID: 8787417
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Aspergillus niger carbon catabolite repressor encoding gene, creA.
    Drysdale MR; Kolze SE; Kelly JM
    Gene; 1993 Aug; 130(2):241-5. PubMed ID: 8359691
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evolution of transcription-regulating proteins by enzyme recruitment: molecular models for nitrogen metabolite repression and ethanol utilisation in eukaryotes.
    Hawkins AR; Lamb HK; Radford A; Moore JD
    Gene; 1994 Sep; 146(2):145-58. PubMed ID: 8076813
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Aspergillus nidulans acuL gene encodes a mitochondrial carrier required for the utilization of carbon sources that are metabolized via the TCA cycle.
    Flipphi M; Oestreicher N; Nicolas V; Guitton A; Vélot C
    Fungal Genet Biol; 2014 Jul; 68():9-22. PubMed ID: 24835019
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of mutations in the creA gene involved in carbon catabolite repression in Aspergillus nidulans.
    Shroff RA; Lockington RA; Kelly JM
    Can J Microbiol; 1996 Sep; 42(9):950-9. PubMed ID: 8864218
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The glucose repressor CRE1 from Sclerotinia sclerotiorum is functionally related to CREA from Aspergillus nidulans but not to the Mig proteins from Saccharomyces cerevisiae.
    Vautard G; Cotton P; Fèvre M
    FEBS Lett; 1999 Jun; 453(1-2):54-8. PubMed ID: 10403374
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of the creA gene, a regulator of carbon catabolite repression in Aspergillus nidulans.
    Dowzer CE; Kelly JM
    Mol Cell Biol; 1991 Nov; 11(11):5701-9. PubMed ID: 1922072
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The purine degradation pathway, genetics, biochemistry and regulation.
    Scazzocchio C
    Prog Ind Microbiol; 1994; 29():221-57. PubMed ID: 7765126
    [No Abstract]   [Full Text] [Related]  

  • 39. Regulation of the urea active transporter gene (DUR3) in Saccharomyces cerevisiae.
    ElBerry HM; Majumdar ML; Cunningham TS; Sumrada RA; Cooper TG
    J Bacteriol; 1993 Aug; 175(15):4688-98. PubMed ID: 8335627
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A role for creD, a carbon catabolite repression gene from Aspergillus nidulans, in ubiquitination.
    Boase NA; Kelly JM
    Mol Microbiol; 2004 Aug; 53(3):929-40. PubMed ID: 15255903
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.