BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 7765173)

  • 1. Engineering proteases with altered specificity.
    Leis JP; Cameron CE
    Curr Opin Biotechnol; 1994 Aug; 5(4):403-8. PubMed ID: 7765173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering aspartic proteases to probe structure and function relationships.
    Tang J; Lin X
    Curr Opin Biotechnol; 1994 Aug; 5(4):422-7. PubMed ID: 7765175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional linkage between the active site of alpha-lytic protease and distant regions of structure: scanning alanine mutagenesis of a surface loop affects activity and substrate specificity.
    Mace JE; Wilk BJ; Agard DA
    J Mol Biol; 1995 Aug; 251(1):116-34. PubMed ID: 7643381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cleavage of vimentin by different retroviral proteases.
    Snásel J; Shoeman R; Horejsí M; Hrusková-Heidingsfeldová O; Sedlácek J; Ruml T; Pichová I
    Arch Biochem Biophys; 2000 May; 377(2):241-5. PubMed ID: 10845700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Programming the Rous sarcoma virus protease to cleave new substrate sequences.
    Ridky TW; Bizub-Bender D; Cameron CE; Weber IT; Wlodawer A; Copeland T; Skalka AM; Leis J
    J Biol Chem; 1996 May; 271(18):10538-44. PubMed ID: 8631853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Breaking the shackles of the genetic code: engineering retroviral proteases through total chemical synthesis.
    Kent SB; Baca M; Elder J; Miller M; Milton R; Milton S; Rao JK; Schnölzer M
    Adv Exp Med Biol; 1995; 362():425-38. PubMed ID: 8540353
    [No Abstract]   [Full Text] [Related]  

  • 7. Random mutagenesis of the substrate-binding site of a serine protease can generate enzymes with increased activities and altered primary specificities.
    Graham LD; Haggett KD; Jennings PA; Le Brocque DS; Whittaker RG; Schober PA
    Biochemistry; 1993 Jun; 32(24):6250-8. PubMed ID: 8512935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alteration of substrate and inhibitor specificity of feline immunodeficiency virus protease.
    Lin YC; Beck Z; Lee T; Le VD; Morris GM; Olson AJ; Wong CH; Elder JH
    J Virol; 2000 May; 74(10):4710-20. PubMed ID: 10775609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and biochemical studies of retroviral proteases.
    Wlodawer A; Gustchina A
    Biochim Biophys Acta; 2000 Mar; 1477(1-2):16-34. PubMed ID: 10708846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic and structural characterization of mutations of glycine 216 in alpha-lytic protease: a new target for engineering substrate specificity.
    Mace JE; Agard DA
    J Mol Biol; 1995 Dec; 254(4):720-36. PubMed ID: 7500345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of a retroviral protease proves relationship to aspartic protease family.
    Miller M; Jaskólski M; Rao JK; Leis J; Wlodawer A
    Nature; 1989 Feb; 337(6207):576-9. PubMed ID: 2536902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutational remodeling of enzyme specificity.
    Bone R; Agard DA
    Methods Enzymol; 1991; 202():643-71. PubMed ID: 1784192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retroviral proteases.
    Dunn BM; Goodenow MM; Gustchina A; Wlodawer A
    Genome Biol; 2002; 3(4):REVIEWS3006. PubMed ID: 11983066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate specificity of the human (type 1) and simian immunodeficiency virus proteases.
    Debouck C
    Adv Exp Med Biol; 1991; 306():407-15. PubMed ID: 1812737
    [No Abstract]   [Full Text] [Related]  

  • 15. Synthetic approaches to continuous assays of retroviral proteases.
    Krafft GA; Wang GT
    Methods Enzymol; 1994; 241():70-86. PubMed ID: 7854193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altered gag polyprotein cleavage specificity of feline immunodeficiency virus/human immunodeficiency virus mutant proteases as demonstrated in a cell-based expression system.
    Lin YC; Brik A; de Parseval A; Tam K; Torbett BE; Wong CH; Elder JH
    J Virol; 2006 Aug; 80(16):7832-43. PubMed ID: 16873240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active site contribution to specificity of the aspartic proteases plasmepsins I and II.
    Siripurkpong P; Yuvaniyama J; Wilairat P; Goldberg DE
    J Biol Chem; 2002 Oct; 277(43):41009-13. PubMed ID: 12189138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The S8 serine, C1A cysteine and A1 aspartic protease families in Arabidopsis.
    Beers EP; Jones AM; Dickerman AW
    Phytochemistry; 2004 Jan; 65(1):43-58. PubMed ID: 14697270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Random mutagenesis of the substrate-binding site of a serine protease. A new library of alpha-lytic protease S1 mutants.
    Graham LD; Haggett KD; Hayes PJ; Schober PA; Jennings PA; Whittaker RG
    Ann N Y Acad Sci; 1995 Mar; 750():10-4. PubMed ID: 7785837
    [No Abstract]   [Full Text] [Related]  

  • 20. Structural basis for the broad substrate specificity of fiddler crab collagenolytic serine protease 1.
    Tsu CA; Perona JJ; Fletterick RJ; Craik CS
    Biochemistry; 1997 May; 36(18):5393-401. PubMed ID: 9154921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.