These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 7765173)

  • 41. Role of prohormone convertases in pro-neuropeptide Y processing: coexpression and in vitro kinetic investigations.
    Brakch N; Rist B; Beck-Sickinger AG; Goenaga J; Wittek R; Bürger E; Brunner HR; Grouzmann E
    Biochemistry; 1997 Dec; 36(51):16309-20. PubMed ID: 9405066
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The 80's loop (residues 78 to 85) is important for the differential activity of retroviral proteases.
    Stebbins J; Towler EM; Tennant MG; Deckman IC; Debouck C
    J Mol Biol; 1997 Apr; 267(3):467-75. PubMed ID: 9126830
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A novel substrate-binding pocket interaction restricts the specificity of the human NK cell-specific serine protease, Met-ase-1.
    Smyth MJ; O'Connor MD; Trapani JA; Kershaw MH; Brinkworth RI
    J Immunol; 1996 Jun; 156(11):4174-81. PubMed ID: 8666785
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structural basis for specificity of retroviral proteases.
    Wu J; Adomat JM; Ridky TW; Louis JM; Leis J; Harrison RW; Weber IT
    Biochemistry; 1998 Mar; 37(13):4518-26. PubMed ID: 9521772
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A new library of alpha-lytic protease S1 mutants generated by combinatorial random substitution.
    Graham LD; Haggett KD; Hayes PJ; Schober PA; Jennings PA; Whittaker RG
    Biochem Mol Biol Int; 1994 Apr; 32(5):831-9. PubMed ID: 8069232
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Engineering of S2 site of aqualysin I; alteration of P2 specificity by excluding P2 side chain.
    Tanaka T; Matsuzawa H; Ohta T
    Biochemistry; 1998 Dec; 37(50):17402-7. PubMed ID: 9860855
    [TBL] [Abstract][Full Text] [Related]  

  • 47. N-terminal domain of pepsin as a model for retroviral dimeric aspartyl protease.
    Bianchi M; Boigegrain RA; Castro B; Coletti-Previero MA
    Biochem Biophys Res Commun; 1990 Feb; 167(1):339-44. PubMed ID: 2106884
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Assay methods for retroviral proteases.
    Hellen CU
    Methods Enzymol; 1994; 241():46-58. PubMed ID: 7854191
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Protein engineering of the high-alkaline serine protease PB92 from Bacillus alcalophilus: functional and structural consequences of mutation at the S4 substrate binding pocket.
    Teplyakov AV; van der Laan JM; Lammers AA; Kelders H; Kalk KH; Misset O; Mulleners LJ; Dijkstra BW
    Protein Eng; 1992 Jul; 5(5):413-20. PubMed ID: 1518789
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A structural model for the retroviral proteases.
    Pearl LH; Taylor WR
    Nature; 1987 Sep 24-30; 329(6137):351-4. PubMed ID: 3306411
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ddi1, a eukaryotic protein with the retroviral protease fold.
    Sirkis R; Gerst JE; Fass D
    J Mol Biol; 2006 Dec; 364(3):376-87. PubMed ID: 17010377
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A novel family of predicted retroviral-like aspartyl proteases with a possible key role in eukaryotic cell cycle control.
    Krylov DM; Koonin EV
    Curr Biol; 2001 Aug; 11(15):R584-7. PubMed ID: 11516960
    [No Abstract]   [Full Text] [Related]  

  • 53. Isolating substrates for an engineered alpha-lytic protease by phage display.
    Lien S; Francis GL; Graham LD; Wallace JC
    J Protein Chem; 2003 Feb; 22(2):155-66. PubMed ID: 12760420
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Engineering of the Lactococcus lactis serine proteinase by construction of hybrid enzymes.
    Vos P; Boerrigter IJ; Buist G; Haandrikman AJ; Nijhuis M; de Reuver MB; Siezen RJ; Venema G; de Vos WM; Kok J
    Protein Eng; 1991 Apr; 4(4):479-84. PubMed ID: 1881875
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Pro-protein convertases of subtilisin/kexin family.
    Seidah NG; Chrétien M
    Methods Enzymol; 1994; 244():175-88. PubMed ID: 7845206
    [No Abstract]   [Full Text] [Related]  

  • 56. Secreted proteases from pathogenic fungi.
    Monod M; Capoccia S; Léchenne B; Zaugg C; Holdom M; Jousson O
    Int J Med Microbiol; 2002 Oct; 292(5-6):405-19. PubMed ID: 12452286
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Proteases universally recognize beta strands in their active sites.
    Tyndall JD; Nall T; Fairlie DP
    Chem Rev; 2005 Mar; 105(3):973-99. PubMed ID: 15755082
    [No Abstract]   [Full Text] [Related]  

  • 58. Granzymes (lymphocyte serine proteases): characterization with natural and synthetic substrates and inhibitors.
    Kam CM; Hudig D; Powers JC
    Biochim Biophys Acta; 2000 Mar; 1477(1-2):307-23. PubMed ID: 10708866
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Glycine 384 is required for presenilin-1 function and is conserved in bacterial polytopic aspartyl proteases.
    Steiner H; Kostka M; Romig H; Basset G; Pesold B; Hardy J; Capell A; Meyn L; Grim ML; Baumeister R; Fechteler K; Haass C
    Nat Cell Biol; 2000 Nov; 2(11):848-51. PubMed ID: 11056541
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identification and characterization of a novel retroviral-like aspartic protease specifically expressed in human epidermis.
    Bernard D; Méhul B; Thomas-Collignon A; Delattre C; Donovan M; Schmidt R
    J Invest Dermatol; 2005 Aug; 125(2):278-87. PubMed ID: 16098038
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.