These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 7765375)
21. Hydrophobic interaction determined by partition in aqueous two-phase systems. Partition of proteins in systems containing fatty-acid esters of poly(ethylene glycol). Shanbhag VP; Axelsson CG Eur J Biochem; 1975 Dec; 60(1):17-22. PubMed ID: 1263 [TBL] [Abstract][Full Text] [Related]
22. Affinity partitioning of albumin and alpha-fetoprotein in an aqueous two-phase system using poly(ethylene glycol)-bound triazine dyes. Birkenmeier G; Usbeck E; Kopperschläger G Anal Biochem; 1984 Jan; 136(1):264-71. PubMed ID: 6201086 [TBL] [Abstract][Full Text] [Related]
23. Nanoparticle conjugation increases protein partitioning in aqueous two-phase systems. Long MS; Keating CD Anal Chem; 2006 Jan; 78(2):379-86. PubMed ID: 16408917 [TBL] [Abstract][Full Text] [Related]
24. Effect of some poly(ethylene glycol)-bound and dextran-bound affinity ligands on the partition of synaptic membranes in aqueous two-phase systems. Johansson G; Olde B; Joelsson M J Chromatogr; 1994 Feb; 652(2):137-47. PubMed ID: 7516343 [TBL] [Abstract][Full Text] [Related]
25. Affinity partitioning: a new approach for studying dye-protein interactions. Kopperschläger G; Birkenmeier G J Chromatogr; 1986 Apr; 376():141-8. PubMed ID: 2423545 [TBL] [Abstract][Full Text] [Related]
26. Affinity partitioning of enzymes using dextran-bound procion yellow HE-3G. Influence of dye-ligand density. Johansson G; Joelsson M J Chromatogr; 1987 Apr; 393(2):195-208. PubMed ID: 2439524 [TBL] [Abstract][Full Text] [Related]
27. Partitioning the loss in vancomycin binding affinity for D-Ala-D-Lac into lost H-bond and repulsive lone pair contributions. McComas CC; Crowley BM; Boger DL J Am Chem Soc; 2003 Aug; 125(31):9314-5. PubMed ID: 12889959 [TBL] [Abstract][Full Text] [Related]
28. Affinity partitioning of proteins tagged with choline-binding modules in aqueous two-phase systems. Maestro B; Velasco I; Castillejo I; Arévalo-Rodríguez M; Cebolla A; Sanz JM J Chromatogr A; 2008 Oct; 1208(1-2):189-96. PubMed ID: 18790485 [TBL] [Abstract][Full Text] [Related]
29. Protein partitioning in aqueous two-phase systems composed of a pH-responsive copolymer and poly(ethylene glycol). Waziri SM; Abu-Sharkh BF; Ali SA Biotechnol Prog; 2004; 20(2):526-32. PubMed ID: 15058998 [TBL] [Abstract][Full Text] [Related]
30. Cell partitioning in two-polymer aqueous phase systems and cell electrophoresis in aqueous polymer solutions. Red blood cells from different species. Walter H; Widen KE J Chromatogr A; 1994 May; 668(1):185-90. PubMed ID: 7516245 [TBL] [Abstract][Full Text] [Related]
31. The purification of membranes by affinity partitioning. Persson A; Jergil B FASEB J; 1995 Oct; 9(13):1304-10. PubMed ID: 7557020 [TBL] [Abstract][Full Text] [Related]
32. A trivalent system from vancomycin.D-ala-D-Ala with higher affinity than avidin.biotin. Rao J; Lahiri J; Isaacs L; Weis RM; Whitesides GM Science; 1998 May; 280(5364):708-11. PubMed ID: 9563940 [TBL] [Abstract][Full Text] [Related]
33. Affinity-specific protein separations using ligand-coupled particles in aqueous two-phase systems: I. Process concept and enzyme binding studies for pyruvate kinase and alcohol dehydrogenase from Saccharomyces cerevisiae. Ku CA; Henry JD; Blair JB Biotechnol Bioeng; 1989 Apr; 33(9):1081-8. PubMed ID: 18588024 [TBL] [Abstract][Full Text] [Related]
34. Immobilized metal ion affinity partitioning of cells in aqueous two-phase systems: erythrocytes as a model. Botros HG; Birkenmeier G; Otto A; Kopperschlager G; Vijayalakshmi MA Biochim Biophys Acta; 1991 May; 1074(1):69-73. PubMed ID: 2043682 [TBL] [Abstract][Full Text] [Related]
35. Affinity partitioning of erythrocytic phosphofructokinase in aqueous two-phase systems containing poly(ethylene glycol)-bound cibacron blue. Influence of pH, ionic strength and substrates/effectors. Tejedor MC; Delgado C; Grupeli M; Luque J J Chromatogr; 1992 Jan; 589(1-2):127-34. PubMed ID: 1531834 [TBL] [Abstract][Full Text] [Related]
36. Influence of polymer structure on protein partitioning in two-phase aqueous systems. Hamad EZ; Ijaz W; Ali SA; Hastaoglu MA Biotechnol Prog; 1996; 12(2):173-7. PubMed ID: 8857185 [TBL] [Abstract][Full Text] [Related]
37. Effect of polymer structure on affinity partitioning of lactate dehydrogenase in polymer-water two-phase systems. Johansson G; Joelsson M J Chromatogr; 1987 Dec; 411():161-6. PubMed ID: 2450883 [TBL] [Abstract][Full Text] [Related]
38. Evaluation of crude hydroxypropyl starch as a bioseparation aqueous-phase-forming polymer. Venâncio A; Teixeira JA; Mota M Biotechnol Prog; 1993; 9(6):635-9. PubMed ID: 7764352 [TBL] [Abstract][Full Text] [Related]
39. Aqueous two-phase extraction for protein recovery from corn extracts. Gu Z; Glatz CE J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Jan; 845(1):38-50. PubMed ID: 16920413 [TBL] [Abstract][Full Text] [Related]
40. Partition behavior of amino acids and small peptides in aqueous dextran--poly(ethylene glycol) phase systems. Sasakawa S; Walter H Biochemistry; 1974 Jan; 13(1):29-33. PubMed ID: 4808704 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]