These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 7765415)

  • 1. Mathematical modelling of industrial pilot-plant penicillin-G fed-batch fermentations.
    Menezes JC; Alves SS; Lemos JM; de Azevedo SF
    J Chem Technol Biotechnol; 1994 Oct; 61(2):123-38. PubMed ID: 7765415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation of diauxic production of cephalosporin C by Cephalosporium acremonium: lag model for fed-batch fermentation.
    Basak S; Velayudhan A; Ladisch MR
    Biotechnol Prog; 1995; 11(6):626-31. PubMed ID: 8541014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of two unstructured mathematical models for the penicillin G fed-batch fermentation.
    Nicolaï BM; Van Impe JF; Vanrolleghem PA; Vandewalle J
    Antonie Van Leeuwenhoek; 1992 Nov; 62(4):273-83. PubMed ID: 1285644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fed-batch cultivation of Wautersia eutropha.
    Patwardhan P; Srivastava AK
    Bioresour Technol; 2008 Apr; 99(6):1787-92. PubMed ID: 17532211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase shifts in the stoichiometry of rifamycin B fermentation and correlation with the trends in the parameters measured online.
    Bapat PM; Das D; Dave NN; Wangikar PP
    J Biotechnol; 2006 Dec; 127(1):115-28. PubMed ID: 16904217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of spectrofluorometry as a tool for estimation in fed-batch fermentations.
    Hagedorn A; Legge RL; Budman H
    Biotechnol Bioeng; 2003 Jul; 83(1):104-11. PubMed ID: 12740937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling of Xanthophyllomyces dendrorhous growth on glucose and overflow metabolism in batch and fed-batch cultures for astaxanthin production.
    Liu YS; Wu JY
    Biotechnol Bioeng; 2008 Dec; 101(5):996-1004. PubMed ID: 18683256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Online determination of viable biomass up to very high cell densities in Arxula adeninivorans fermentations using an impedance signal.
    Knabben I; Regestein L; Grumbach C; Steinbusch S; Kunze G; Büchs J
    J Biotechnol; 2010 Aug; 149(1-2):60-6. PubMed ID: 20599575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphologically structured model for antitumoral retamycin production during batch and fed-batch cultivations of Streptomyces olindensis.
    Giudici R; Pamboukian CR; Facciotti MC
    Biotechnol Bioeng; 2004 May; 86(4):414-24. PubMed ID: 15112294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A structured model for hyphal differentiation and penicillin production using Penicillium chrysogenum.
    Paul GC; Thomas CR
    Biotechnol Bioeng; 1996 Sep; 51(5):558-72. PubMed ID: 18629820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simple substrate feeding strategy using a pH control trigger in fed-batch fermentation.
    Ting TE; Thoma GJ; Beitle RR; Davis RK; Perkins R; Karim K; Liu HM
    Appl Biochem Biotechnol; 2008 Apr; 149(1):89-98. PubMed ID: 18350390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kefir yeast technology: scale-up in SCP production using milk whey.
    Koutinas AA; Athanasiadis I; Bekatorou A; Iconomopoulou M; Blekas G
    Biotechnol Bioeng; 2005 Mar; 89(7):788-96. PubMed ID: 15688361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A model of xylitol production by the yeast Candida mogii.
    Tochampa W; Sirisansaneeyakul S; Vanichsriratana W; Srinophakun P; Bakker HH; Chisti Y
    Bioprocess Biosyst Eng; 2005 Dec; 28(3):175-83. PubMed ID: 16215727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structured kinetic model to represent the utilization of multiple substrates in complex media during rifamycin B fermentation.
    Bapat PM; Bhartiya S; Venkatesh KV; Wangikar PP
    Biotechnol Bioeng; 2006 Mar; 93(4):779-90. PubMed ID: 16302259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ethanol fermentation in an immobilized cell reactor using Saccharomyces cerevisiae.
    Najafpour G; Younesi H; Syahidah Ku Ismail K
    Bioresour Technol; 2004 May; 92(3):251-60. PubMed ID: 14766158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of continuous fed-batch fermentation process using neural network based model predictive controller.
    Kiran AU; Jana AK
    Bioprocess Biosyst Eng; 2009 Oct; 32(6):801-8. PubMed ID: 19259705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proof-of-concept of a novel micro-bioreactor for fast development of industrial bioprocesses.
    Reis N; Gonçalves CN; Vicente AA; Teixeira JA
    Biotechnol Bioeng; 2006 Nov; 95(4):744-53. PubMed ID: 16758459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Xylitol production from corn cob hemicellulosic hydrolysate by Candida sp].
    Fang XN; Huang W; Xia LM
    Sheng Wu Gong Cheng Xue Bao; 2004 Mar; 20(2):295-8. PubMed ID: 15969126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies related to the scale-up of high-cell-density E. coli fed-batch fermentations using multiparameter flow cytometry: effect of a changing microenvironment with respect to glucose and dissolved oxygen concentration.
    Hewitt CJ; Nebe-Von Caron G; Axelsson B; McFarlane CM; Nienow AW
    Biotechnol Bioeng; 2000 Nov; 70(4):381-90. PubMed ID: 11005920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.