These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 7765461)

  • 1. Construction and screening of biological peptide libraries.
    Schatz PJ
    Curr Opin Biotechnol; 1994 Oct; 5(5):487-94. PubMed ID: 7765461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of peptide libraries to map the substrate specificity of a peptide-modifying enzyme: a 13 residue consensus peptide specifies biotinylation in Escherichia coli.
    Schatz PJ
    Biotechnology (N Y); 1993 Oct; 11(10):1138-43. PubMed ID: 7764094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying specificity profiles for peptide recognition modules from phage-displayed peptide libraries.
    Tonikian R; Zhang Y; Boone C; Sidhu SS
    Nat Protoc; 2007; 2(6):1368-86. PubMed ID: 17545975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Origins of the specificity of tissue-type plasminogen activator.
    Ding L; Coombs GS; Strandberg L; Navre M; Corey DR; Madison EL
    Proc Natl Acad Sci U S A; 1995 Aug; 92(17):7627-31. PubMed ID: 7644467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Screening for receptor ligands using large libraries of peptides linked to the C terminus of the lac repressor.
    Cull MG; Miller JF; Schatz PJ
    Proc Natl Acad Sci U S A; 1992 Mar; 89(5):1865-9. PubMed ID: 1347427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An in vitro polysome display system for identifying ligands from very large peptide libraries.
    Mattheakis LC; Bhatt RR; Dower WJ
    Proc Natl Acad Sci U S A; 1994 Sep; 91(19):9022-6. PubMed ID: 7522328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simplified methods for construction, assessment and rapid screening of peptide libraries in bacteriophage.
    Christian RB; Zuckermann RN; Kerr JM; Wang L; Malcolm BA
    J Mol Biol; 1992 Oct; 227(3):711-8. PubMed ID: 1404385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A cDNA derived from pig bone marrow cells predicts a sequence identical to the intestinal antibacterial peptide PR-39.
    Storici P; Zanetti M
    Biochem Biophys Res Commun; 1993 Nov; 196(3):1058-65. PubMed ID: 8250863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High affinity type I interleukin 1 receptor antagonists discovered by screening recombinant peptide libraries.
    Yanofsky SD; Baldwin DN; Butler JH; Holden FR; Jacobs JW; Balasubramanian P; Chinn JP; Cwirla SE; Peters-Bhatt E; Whitehorn EA; Tate EH; Akeson A; Bowlin TL; Dower WJ; Barrett RW
    Proc Natl Acad Sci U S A; 1996 Jul; 93(14):7381-6. PubMed ID: 8693002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Guided evolution of enzymes with new substrate specificities.
    el Hawrani AS; Sessions RB; Moreton KM; Holbrook JJ
    J Mol Biol; 1996 Nov; 264(1):97-110. PubMed ID: 8950270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production in Escherichia of moricin, a novel type antibacterial peptide from the silkworm, Bombyx mori.
    Hara S; Yamakawa M
    Biochem Biophys Res Commun; 1996 Mar; 220(3):664-9. PubMed ID: 8607822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene design, fusion technology and TEV cleavage conditions influence the purification of oxidized disulphide-rich venom peptides in Escherichia coli.
    Sequeira AF; Turchetto J; Saez NJ; Peysson F; Ramond L; Duhoo Y; Blémont M; Fernandes VO; Gama LT; Ferreira LM; Guerreiro CI; Gilles N; Darbon H; Fontes CM; Vincentelli R
    Microb Cell Fact; 2017 Jan; 16(1):4. PubMed ID: 28093085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct expression of PCR products in a cell-free transcription/translation system: synthesis of antibacterial peptide cecropin.
    Martemyanov KA; Spirin AS; Gudkov AT
    FEBS Lett; 1997 Sep; 414(2):268-70. PubMed ID: 9315699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Libraries of peptides and proteins displayed on filamentous phage.
    Smith GP; Scott JK
    Methods Enzymol; 1993; 217():228-57. PubMed ID: 7682645
    [No Abstract]   [Full Text] [Related]  

  • 15. DNA display for in vitro selection of diverse peptide libraries.
    Yonezawa M; Doi N; Kawahashi Y; Higashinakagawa T; Yanagawa H
    Nucleic Acids Res; 2003 Oct; 31(19):e118. PubMed ID: 14500846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peptide inhibitors of DNA cleavage by tyrosine recombinases and topoisomerases.
    Klemm M; Cheng C; Cassell G; Shuman S; Segall AM
    J Mol Biol; 2000 Jun; 299(5):1203-16. PubMed ID: 10873446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Designing scaffolds of peptides for phage display libraries.
    Uchiyama F; Tanaka Y; Minari Y; Tokui N
    J Biosci Bioeng; 2005 May; 99(5):448-56. PubMed ID: 16233816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-frame cloning of synthetic genes using PCR inserts.
    Pierce JC
    Methods Mol Biol; 1997; 67():151-65. PubMed ID: 9031139
    [No Abstract]   [Full Text] [Related]  

  • 19. The tetramethylammonium chloride (TMAC) method for screening cDNA libraries with highly degenerate oligonucleotide probes obtained by reverse translation of amino acid sequences.
    Honoré B; Madsen P
    Methods Mol Biol; 1997; 69():139-46. PubMed ID: 9116848
    [No Abstract]   [Full Text] [Related]  

  • 20. Biochemical diversity in a phage display library of random decapeptides.
    DeGraaf ME; Miceli RM; Mott JE; Fischer HD
    Gene; 1993 Jun; 128(1):13-7. PubMed ID: 8508954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.