These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 7765546)
1. Elucidating structure-mechanism relationships in lipases: prospects for predicting and engineering catalytic properties. Kazlauskas RJ Trends Biotechnol; 1994 Nov; 12(11):464-72. PubMed ID: 7765546 [TBL] [Abstract][Full Text] [Related]
2. Enantioselectivity of Candida rugosa lipases (Lip1, Lip3, and Lip4) towards 2-bromo phenylacetic acid octyl esters controlled by a single amino acid. Piamtongkam R; Duquesne S; Bordes F; Barbe S; André I; Marty A; Chulalaksananukul W Biotechnol Bioeng; 2011 Aug; 108(8):1749-56. PubMed ID: 21391204 [TBL] [Abstract][Full Text] [Related]
3. GDSL family of serine esterases/lipases. Akoh CC; Lee GC; Liaw YC; Huang TH; Shaw JF Prog Lipid Res; 2004 Nov; 43(6):534-52. PubMed ID: 15522763 [TBL] [Abstract][Full Text] [Related]
4. Biochemical profiling in silico--predicting substrate specificities of large enzyme families. Tyagi S; Pleiss J J Biotechnol; 2006 Jun; 124(1):108-16. PubMed ID: 16519956 [TBL] [Abstract][Full Text] [Related]
5. The crystal structure of a triacylglycerol lipase from Pseudomonas cepacia reveals a highly open conformation in the absence of a bound inhibitor. Kim KK; Song HK; Shin DH; Hwang KY; Suh SW Structure; 1997 Feb; 5(2):173-85. PubMed ID: 9032073 [TBL] [Abstract][Full Text] [Related]
6. The crystal structure of an EST2 mutant unveils structural insights on the H group of the carboxylesterase/lipase family. De Simone G; Menchise V; Alterio V; Mandrich L; Rossi M; Manco G; Pedone C J Mol Biol; 2004 Oct; 343(1):137-46. PubMed ID: 15381425 [TBL] [Abstract][Full Text] [Related]
7. Structure, mechanism, and enantioselectivity shifting of lipase LipK107 with a simple way. Zhang L; Gao B; Yuan Z; He X; Yuan YA; Zhang JZ; Wei D Biochim Biophys Acta; 2014 Jul; 1844(7):1183-92. PubMed ID: 24602769 [TBL] [Abstract][Full Text] [Related]
8. Improvement of Yarrowia lipolytica lipase enantioselectivity by using mutagenesis targeted to the substrate binding site. Bordes F; Cambon E; Dossat-Létisse V; André I; Croux C; Nicaud JM; Marty A Chembiochem; 2009 Jul; 10(10):1705-13. PubMed ID: 19504508 [TBL] [Abstract][Full Text] [Related]
9. Structural insights into the lipase/esterase behavior in the Candida rugosa lipases family: crystal structure of the lipase 2 isoenzyme at 1.97A resolution. Mancheño JM; Pernas MA; Martínez MJ; Ochoa B; Rúa ML; Hermoso JA J Mol Biol; 2003 Oct; 332(5):1059-69. PubMed ID: 14499609 [TBL] [Abstract][Full Text] [Related]
10. Inhibition of dog and human gastric lipases by enantiomeric phosphonate inhibitors: a structure-activity study. Miled N; Roussel A; Bussetta C; Berti-Dupuis L; Rivière M; Buono G; Verger R; Cambillau C; Canaan S Biochemistry; 2003 Oct; 42(40):11587-93. PubMed ID: 14529268 [TBL] [Abstract][Full Text] [Related]
11. Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Jaeger KE; Dijkstra BW; Reetz MT Annu Rev Microbiol; 1999; 53():315-51. PubMed ID: 10547694 [TBL] [Abstract][Full Text] [Related]
12. A proposed architecture for lecithin cholesterol acyl transferase (LCAT): identification of the catalytic triad and molecular modeling. Peelman F; Vinaimont N; Verhee A; Vanloo B; Verschelde JL; Labeur C; Seguret-Mace S; Duverger N; Hutchinson G; Vandekerckhove J; Tavernier J; Rosseneu M Protein Sci; 1998 Mar; 7(3):587-99. PubMed ID: 9541390 [TBL] [Abstract][Full Text] [Related]
13. X-ray structure of Candida antarctica lipase A shows a novel lid structure and a likely mode of interfacial activation. Ericsson DJ; Kasrayan A; Johansson P; Bergfors T; Sandström AG; Bäckvall JE; Mowbray SL J Mol Biol; 2008 Feb; 376(1):109-19. PubMed ID: 18155238 [TBL] [Abstract][Full Text] [Related]
18. Loop grafting of Bacillus subtilis lipase A: inversion of enantioselectivity. Boersma YL; Pijning T; Bosma MS; van der Sloot AM; Godinho LF; Dröge MJ; Winter RT; van Pouderoyen G; Dijkstra BW; Quax WJ Chem Biol; 2008 Aug; 15(8):782-9. PubMed ID: 18721749 [TBL] [Abstract][Full Text] [Related]
19. Computer modeling of substrate binding to lipases from Rhizomucor miehei, Humicola lanuginosa, and Candida rugosa. Norin M; Haeffner F; Achour A; Norin T; Hult K Protein Sci; 1994 Sep; 3(9):1493-503. PubMed ID: 7833809 [TBL] [Abstract][Full Text] [Related]
20. Modifying the catalytic preference of tributyrin in Bacillus thermocatenulatus lipase through in-silico modeling of enzyme-substrate complex. Durmaz E; Kuyucak S; Sezerman UO Protein Eng Des Sel; 2013 May; 26(5):325-33. PubMed ID: 23424251 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]