These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 7765774)

  • 1. The influence of cosubstrate and aeration on xylitol formation by recombinant Saccharomyces cerevisiae expressing the XYL1 gene.
    Hallborn J; Gorwa MF; Meinander N; Penttilä M; Keränen S; Hahn-Hägerdal B
    Appl Microbiol Biotechnol; 1994 Nov; 42(2-3):326-33. PubMed ID: 7765774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Xylitol formation and reduction equivalent generation during anaerobic xylose conversion with glucose as cosubstrate in recombinant Saccharomyces cerevisiae expressing the xyl1 gene.
    Thestrup HN; Hahn-Hägerdal B
    Appl Environ Microbiol; 1995 May; 61(5):2043-5. PubMed ID: 7646047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of cosubstrate concentration on xylose conversion by recombinant, XYL1-expressing Saccharomyces cerevisiae: a comparison of different sugars and ethanol as cosubstrates.
    Meinander NQ; Hahn-Hägerdal B
    Appl Environ Microbiol; 1997 May; 63(5):1959-64. PubMed ID: 9143128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae.
    Lee SH; Kodaki T; Park YC; Seo JH
    J Biotechnol; 2012 Apr; 158(4):184-91. PubMed ID: 21699927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Xylitol production by recombinant Saccharomyces cerevisiae expressing the Pichia stipitis and Candida shehatae XYL1 genes.
    Govinden R; Pillay B; van Zyl WH; Pillay D
    Appl Microbiol Biotechnol; 2001 Jan; 55(1):76-80. PubMed ID: 11234962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability.
    Toivari MH; Aristidou A; Ruohonen L; Penttilä M
    Metab Eng; 2001 Jul; 3(3):236-49. PubMed ID: 11461146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of protein engineered NADP+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae.
    Matsushika A; Watanabe S; Kodaki T; Makino K; Inoue H; Murakami K; Takimura O; Sawayama S
    Appl Microbiol Biotechnol; 2008 Nov; 81(2):243-55. PubMed ID: 18751695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction.
    Almeida JR; Bertilsson M; Hahn-Hägerdal B; Lidén G; Gorwa-Grauslund MF
    Appl Microbiol Biotechnol; 2009 Sep; 84(4):751-61. PubMed ID: 19506862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A glycerol-3-phosphate dehydrogenase-deficient mutant of Saccharomyces cerevisiae expressing the heterologous XYL1 gene.
    Lidén G; Walfridsson M; Ansell R; Anderlund M; Adler L; Hahn-Hägerdal B
    Appl Environ Microbiol; 1996 Oct; 62(10):3894-6. PubMed ID: 8837449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A heterologous reductase affects the redox balance of recombinant Saccharomyces cerevisiae.
    Meinander N; Zacchi G; Hahn-Hägerdal B
    Microbiology (Reading); 1996 Jan; 142 ( Pt 1)():165-172. PubMed ID: 8581161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological and enzymatic comparison between Pichia stipitis and recombinant Saccharomyces cerevisiae on xylose fermentation.
    Guo C; Jiang N
    World J Microbiol Biotechnol; 2013 Mar; 29(3):541-7. PubMed ID: 23180545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The expression of a Pichia stipitis xylose reductase mutant with higher K(M) for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae.
    Jeppsson M; Bengtsson O; Franke K; Lee H; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Biotechnol Bioeng; 2006 Mar; 93(4):665-73. PubMed ID: 16372361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The positive effect of the decreased NADPH-preferring activity of xylose reductase from Pichia stipitis on ethanol production using xylose-fermenting recombinant Saccharomyces cerevisiae.
    Watanabe S; Pack SP; Saleh AA; Annaluru N; Kodaki T; Makino K
    Biosci Biotechnol Biochem; 2007 May; 71(5):1365-9. PubMed ID: 17485825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative study on a series of recombinant flocculent Saccharomyces cerevisiae strains with different expression levels of xylose reductase and xylulokinase.
    Matsushika A; Sawayama S
    Enzyme Microb Technol; 2011 May; 48(6-7):466-71. PubMed ID: 22113018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of bifunctional enzymes with xylose reductase and xylitol dehydrogenase activity in Saccharomyces cerevisiae alters product formation during xylose fermentation.
    Anderlund M; Rådström P; Hahn-Hägerdal B
    Metab Eng; 2001 Jul; 3(3):226-35. PubMed ID: 11461145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Boost in bioethanol production using recombinant Saccharomyces cerevisiae with mutated strictly NADPH-dependent xylose reductase and NADP(+)-dependent xylitol dehydrogenase.
    Khattab SM; Saimura M; Kodaki T
    J Biotechnol; 2013 Jun; 165(3-4):153-6. PubMed ID: 23578809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Xylitol production using recombinant Saccharomyces cerevisiae containing multiple xylose reductase genes at chromosomal delta-sequences.
    Kim YS; Kim SY; Kim JH; Kim SC
    J Biotechnol; 1999 Jan; 67(2-3):159-71. PubMed ID: 9990733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein-engineered NADH-preferring xylose reductase from Pichia stipitis.
    Watanabe S; Abu Saleh A; Pack SP; Annaluru N; Kodaki T; Makino K
    Microbiology (Reading); 2007 Sep; 153(Pt 9):3044-3054. PubMed ID: 17768247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of Xylitol from D-Xylose by Overexpression of Xylose Reductase in Osmotolerant Yeast Candida glycerinogenes WL2002-5.
    Zhang C; Zong H; Zhuge B; Lu X; Fang H; Zhuge J
    Appl Biochem Biotechnol; 2015 Jul; 176(5):1511-27. PubMed ID: 26018342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of the reversal of coenzyme specificity by expression of mutated Pichia stipitis xylitol dehydrogenase in recombinant Saccharomyces cerevisiae.
    Hou J; Shen Y; Li XP; Bao XM
    Lett Appl Microbiol; 2007 Aug; 45(2):184-9. PubMed ID: 17651216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.