These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 7765820)
21. Disruption of the nitrogen regulatory gene AcareA in Acremonium chrysogenum leads to reduction of cephalosporin production and repression of nitrogen metabolism. Li J; Pan Y; Liu G Fungal Genet Biol; 2013 Dec; 61():69-79. PubMed ID: 24161729 [TBL] [Abstract][Full Text] [Related]
22. Expression of the penDE gene of Penicillium chrysogenum encoding isopenicillin N acyltransferase in Cephalosporium acremonium: production of benzylpenicillin by the transformants. Gutiérrez S; Díez B; Alvarez E; Barredo JL; Martín JF Mol Gen Genet; 1991 Jan; 225(1):56-64. PubMed ID: 1900348 [TBL] [Abstract][Full Text] [Related]
23. Characterization of a Penicillium chrysogenum gene encoding a PacC transcription factor and its binding sites in the divergent pcbAB-pcbC promoter of the penicillin biosynthetic cluster. Suárez T; Peñalva MA Mol Microbiol; 1996 May; 20(3):529-40. PubMed ID: 8736532 [TBL] [Abstract][Full Text] [Related]
24. The regulatory factor PcRFX1 controls the expression of the three genes of β-lactam biosynthesis in Penicillium chrysogenum. Domínguez-Santos R; Martín JF; Kosalková K; Prieto C; Ullán RV; García-Estrada C Fungal Genet Biol; 2012 Nov; 49(11):866-81. PubMed ID: 22960281 [TBL] [Abstract][Full Text] [Related]
25. Regulation of isopenicillin N synthetase (IPNS) gene expression in Acremonium chrysogenum. Smith AW; Ramsden M; Dobson MJ; Harford S; Peberdy JF Biotechnology (N Y); 1990 Mar; 8(3):237-40. PubMed ID: 1366405 [TBL] [Abstract][Full Text] [Related]
26. Analysis of promoter activity by transformation of Acremonium chrysogenum. Smith AW; Ramsden M; Peberdy JF Gene; 1992 May; 114(2):211-6. PubMed ID: 1318244 [TBL] [Abstract][Full Text] [Related]
27. Transcriptional and bioinformatic analysis of the 56.8 kb DNA region amplified in tandem repeats containing the penicillin gene cluster in Penicillium chrysogenum. Fierro F; García-Estrada C; Castillo NI; Rodríguez R; Velasco-Conde T; Martín JF Fungal Genet Biol; 2006 Sep; 43(9):618-29. PubMed ID: 16713314 [TBL] [Abstract][Full Text] [Related]
29. AcFKH1, a novel member of the forkhead family, associates with the RFX transcription factor CPCR1 in the cephalosporin C-producing fungus Acremonium chrysogenum. Schmitt EK; Hoff B; Kück U Gene; 2004 Nov; 342(2):269-81. PubMed ID: 15527986 [TBL] [Abstract][Full Text] [Related]
30. Localization of the lysine epsilon-aminotransferase (lat) and delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase (pcbAB) genes from Streptomyces clavuligerus and production of lysine epsilon-aminotransferase activity in Escherichia coli. Tobin MB; Kovacevic S; Madduri K; Hoskins JA; Skatrud PL; Vining LC; Stuttard C; Miller JR J Bacteriol; 1991 Oct; 173(19):6223-9. PubMed ID: 1917855 [TBL] [Abstract][Full Text] [Related]
31. Transcriptional mapping of the genes encoding the early enzymes of the cephamycin biosynthetic pathway of Streptomyces clavuligerus. Petrich AK; Leskiw BK; Paradkar AS; Jensen SE Gene; 1994 May; 142(1):41-8. PubMed ID: 8181755 [TBL] [Abstract][Full Text] [Related]
32. Nuclear DNA-binding proteins which recognize the intergenic control region of penicillin biosynthetic genes. Feng B; Friedlin E; Marzluf GA Curr Genet; 1995 Mar; 27(4):351-8. PubMed ID: 7614558 [TBL] [Abstract][Full Text] [Related]
33. Enhancing the production of cephalosporin C through modulating the autophagic process of Acremonium chrysogenum. Li H; Hu P; Wang Y; Pan Y; Liu G Microb Cell Fact; 2018 Nov; 17(1):175. PubMed ID: 30424777 [TBL] [Abstract][Full Text] [Related]
34. The cefT gene of Acremonium chrysogenum C10 encodes a putative multidrug efflux pump protein that significantly increases cephalosporin C production. Ullán RV; Liu G; Casqueiro J; Gutiérrez S; Bañuelos O; Martín JF Mol Genet Genomics; 2002 Jul; 267(5):673-83. PubMed ID: 12172807 [TBL] [Abstract][Full Text] [Related]
35. Characterization of a loss-of-function mutation in the isopenicillin N synthetase gene of Acremonium chrysogenum. Ramsden M; McQuade BA; Saunders K; Turner MK; Harford S Gene; 1989 Dec; 85(1):267-73. PubMed ID: 2620834 [TBL] [Abstract][Full Text] [Related]
36. A GATA-type transcription factor AcAREB for nitrogen metabolism is involved in regulation of cephalosporin biosynthesis in Acremonium chrysogenum. Guan F; Pan Y; Li J; Liu G Sci China Life Sci; 2017 Sep; 60(9):958-967. PubMed ID: 28812298 [TBL] [Abstract][Full Text] [Related]
37. A reporter gene analysis of penicillin biosynthesis gene expression in Penicillium chrysogenum and its regulation by nitrogen and glucose catabolite repression. Feng B; Friedlin E; Marzluf GA Appl Environ Microbiol; 1994 Dec; 60(12):4432-9. PubMed ID: 7811083 [TBL] [Abstract][Full Text] [Related]
38. AcstuA, which encodes an APSES transcription regulator, is involved in conidiation, cephalosporin biosynthesis and cell wall integrity of Acremonium chrysogenum. Hu P; Wang Y; Zhou J; Pan Y; Liu G Fungal Genet Biol; 2015 Oct; 83():26-40. PubMed ID: 26283234 [TBL] [Abstract][Full Text] [Related]
39. Penicillin and cephalosporin biosynthesis: mechanism of carbon catabolite regulation of penicillin production. Martín JF; Casqueiro J; Kosalková K; Marcos AT; Gutiérrez S Antonie Van Leeuwenhoek; 1999; 75(1-2):21-31. PubMed ID: 10422579 [TBL] [Abstract][Full Text] [Related]
40. The gene encoding gamma-actin from the cephalosporin producer Acremonium chrysogenum. Díez B; Velasco J; Marcos AT; Rodríguez M; de la Fuente JL; Barredo JL Appl Microbiol Biotechnol; 2000 Dec; 54(6):786-91. PubMed ID: 11152070 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]