These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 7765937)

  • 1. Evaluation of membranes for use in on-line cell separation during mammalian cell perfusion processes.
    Büntemeyer H; Böhme C; Lehmann J
    Cytotechnology; 1994; 15(1-3):243-51. PubMed ID: 7765937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perfusion systems for hybridoma cells based on sedimentation in chambers and Erlenmeyer flasks.
    Lassen KM; Emborg C
    FEMS Microbiol Rev; 1994 May; 14(1):89-91. PubMed ID: 8011363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of the Centritech Lab centrifuge for perfusion culture of hybridoma cells in protein-free medium.
    Johnson M; Lanthier S; Massie B; Lefebvre G; Kamen AA
    Biotechnol Prog; 1996; 12(6):855-64. PubMed ID: 8983210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large-scale perfusion culture process for suspended mammalian cells that uses a centrifuge with multiple settling zones.
    Takamatsu H; Hamamoto K; Ishimaru K; Yokoyama S; Tokashiki M
    Appl Microbiol Biotechnol; 1996 May; 45(4):454-7. PubMed ID: 8737569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An integrated process for mammalian cell perfusion cultivation and product purification using a dynamic filter.
    Castilho LR; Anspach FB; Deckwer WD
    Biotechnol Prog; 2002; 18(4):776-81. PubMed ID: 12153312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of the chemical composition of cell culture material on the growth and antibody production of hybridoma cells.
    Heilmann K; Groth T; Behrsing O; Albrecht W; Schossig M; Lendlein A; Micheel B
    J Biotechnol; 2005 Feb; 115(3):291-301. PubMed ID: 15639091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inclined sedimentation for selective retention of viable hybridomas in a continuous suspension bioreactor.
    Batt BC; Davis RH; Kompala DS
    Biotechnol Prog; 1990; 6(6):458-64. PubMed ID: 1366836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A perfusion culture system using a stirred ceramic membrane reactor for hyperproduction of IgG2a monoclonal antibody by hybridoma cells.
    Dong H; Tang YJ; Ohashi R; Hamel JF
    Biotechnol Prog; 2005; 21(1):140-7. PubMed ID: 15903251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of thiophilic membranes for the purification of monoclonal antibodies from cell culture media.
    Finger UB; Thömmes J; Kinzelt D; Kula MR
    J Chromatogr B Biomed Appl; 1995 Feb; 664(1):69-78. PubMed ID: 7757242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane-based cell culture systems--an alternative to in vivo production of monoclonal antibodies.
    Nagel A; Koch S; Valley U; Emmrich F; Marx U
    Dev Biol Stand; 1999; 101():57-64. PubMed ID: 10566776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Instability of a hybridoma cell line in a homogeneous continuous perfusion culture system.
    Coco-Martin JM; Oberink JW; Brunink F; Van der Velden-de Groot TA; Beuvery EC
    Hybridoma; 1992 Oct; 11(5):653-65. PubMed ID: 1459588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of membrane type and material on performance of a submerged membrane bioreactor.
    Choi JH; Ng HY
    Chemosphere; 2008 Mar; 71(5):853-9. PubMed ID: 18164743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On-line monitoring of monoclonal antibody formation in high density perfusion culture using FIA.
    Fenge C; Fraune E; Freitag R; Scheper T; Schügerl K
    Cytotechnology; 1991 May; 6(1):55-63. PubMed ID: 1367401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Continuous production of anti-hepatitis B surface antigen monoclonal antibody in hollow fiber perfusion bioreactor].
    Meng MH; Chen GC; Hsieh JH; Yueh Y; Chen SC; Chang TH; Tsao D
    Zhonghua Min Guo Wei Sheng Wu Ji Mian Yi Xue Za Zhi; 1988 Aug; 21(3):125-40. PubMed ID: 3072154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of pore size, shear rate, and harvest time during the constant permeate flux microfiltration of CHO cell culture supernatant.
    Stressmann M; Moresoli C
    Biotechnol Prog; 2008; 24(4):890-7. PubMed ID: 19194898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential of cell retention techniques for large-scale high-density perfusion culture of suspended mammalian cells.
    Voisard D; Meuwly F; Ruffieux PA; Baer G; Kadouri A
    Biotechnol Bioeng; 2003 Jun; 82(7):751-65. PubMed ID: 12701141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanistic modeling of the loss of protein sieving due to internal and external fouling of microfilters.
    Bolton GR; Apostolidis AJ
    Biotechnol Prog; 2017 Sep; 33(5):1323-1333. PubMed ID: 28649713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tissue culture in hollow-fibre systems: implications for downstream processing and stability analysis.
    Tiebout RF
    Dev Biol Stand; 1990; 71():65-71. PubMed ID: 2119319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New developments in the cultivation of hybridoma cells in homogeneous continuous perfusion systems.
    van der Velden-de Groot TA; Martin JM; Beuvery EC
    Dev Biol Stand; 1990; 71():45-54. PubMed ID: 2401387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fouling behavior of lysozyme on different membrane surfaces during the MD operation: An especial interest in the interaction energy evaluation.
    Liu C; Chen L; Zhu L
    Water Res; 2017 Aug; 119():33-46. PubMed ID: 28433881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.