BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 7765960)

  • 1. Mutational analysis of the putative substrate-binding site of 3C proteinase of coxsackievirus B3.
    Miyashita K; Utsumi R; Utsumi T; Komano T; Satoh N
    Biosci Biotechnol Biochem; 1995 Jan; 59(1):121-2. PubMed ID: 7765960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Site-directed mutagenesis of the putative active site residues of 3C proteinase of coxsackievirus B3: evidence of a functional relationship with trypsin-like serine proteinases.
    Miyashita K; Kusumi M; Utsumi R; Katayama S; Noda M; Komano T; Satoh N
    Protein Eng; 1993 Feb; 6(2):189-93. PubMed ID: 8386363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Processing of N-terminal unnatural amino acids in recombinant human interferon-beta in Escherichia coli.
    Wang A; Winblade Nairn N; Johnson RS; Tirrell DA; Grabstein K
    Chembiochem; 2008 Jan; 9(2):324-30. PubMed ID: 18098265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Serine319 and 321 are functional in isocitrate lyase from Escherichia coli.
    Rehman A; McFadden BA
    Curr Microbiol; 1997 Apr; 34(4):205-11. PubMed ID: 9058538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of putative active-site residues in the DNase domain of colicin E9 by random mutagenesis.
    Garinot-Schneider C; Pommer AJ; Moore GR; Kleanthous C; James R
    J Mol Biol; 1996 Aug; 260(5):731-42. PubMed ID: 8709151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human rhinovirus-14 protease 3C (3Cpro) binds specifically to the 5'-noncoding region of the viral RNA. Evidence that 3Cpro has different domains for the RNA binding and proteolytic activities.
    Leong LE; Walker PA; Porter AG
    J Biol Chem; 1993 Dec; 268(34):25735-9. PubMed ID: 8245010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression and purification of recombinant 3C proteinase of Coxsackievirus B3.
    Miyashita K; Kusumi M; Utsumi R; Komano T; Satoh N
    Biosci Biotechnol Biochem; 1992 May; 56(5):746-50. PubMed ID: 1369382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cleavage specificity of coxsackievirus 3C proteinase for peptide substrate.
    Miyashita K; Okunishi J; Utsumi R; Komano T; Tamura T; Satoh N
    Biosci Biotechnol Biochem; 1996 Apr; 60(4):705-7. PubMed ID: 8829544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Site-directed mutagenesis of the putative catalytic triad of poliovirus 3C proteinase.
    Hämmerle T; Hellen CU; Wimmer E
    J Biol Chem; 1991 Mar; 266(9):5412-6. PubMed ID: 1848550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Herpesvirus proteinase: site-directed mutagenesis used to study maturational, release, and inactivation cleavage sites of precursor and to identify a possible catalytic site serine and histidine.
    Welch AR; McNally LM; Hall MR; Gibson W
    J Virol; 1993 Dec; 67(12):7360-72. PubMed ID: 8230459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autolysis of the proteinase from Pseudomonas fluorescens.
    Kumura H; Murata S; Hoshino T; Mikawa K; Shimazaki K
    J Dairy Sci; 1999 Oct; 82(10):2078-83. PubMed ID: 10531592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Species-specific substrate interaction of picornavirus 3C proteinase suballelic exchange mutants.
    Lawson MA; Dasmahapatra B; Semler BL
    J Biol Chem; 1990 Sep; 265(26):15920-31. PubMed ID: 2168426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of critical amino acids within the foot-and-mouth disease virus leader protein, a cysteine protease.
    Roberts PJ; Belsham GJ
    Virology; 1995 Oct; 213(1):140-6. PubMed ID: 7483257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the roles of conserved cysteine and histidine residues in poliovirus 2A protease.
    Yu SF; Lloyd RE
    Virology; 1992 Feb; 186(2):725-35. PubMed ID: 1310193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cleavage specificity of coxsackievirus 3C proteinase for peptide substrate (2): Importance of the P2 and P4 residues.
    Miyashita K; Okunishi J; Utsumi R; Tagiri S; Hotta K; Komano T; Tamura T; Satoh N
    Biosci Biotechnol Biochem; 1996 Sep; 60(9):1528-9. PubMed ID: 8987610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relevance of the conserved histidine and asparagine residues in the phosphate-binding loop of the nucleotide binding subunit B of A₁A₀ ATP synthases.
    Tadwal VS; Sundararaman L; Manimekalai MS; Hunke C; Grüber G
    J Struct Biol; 2012 Dec; 180(3):509-18. PubMed ID: 23063756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chimeric picornavirus polyproteins demonstrate a common 3C proteinase substrate specificity.
    Dewalt PG; Lawson MA; Colonno RJ; Semler BL
    J Virol; 1989 Aug; 63(8):3444-52. PubMed ID: 2545915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel auto-cleavage assay for studying mutational effects on the active site of severe acute respiratory syndrome coronavirus 3C-like protease.
    Shan YF; Li SF; Xu GJ
    Biochem Biophys Res Commun; 2004 Nov; 324(2):579-83. PubMed ID: 15474466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calmodulin isoform-specific activation of a rice calmodulin-binding kinase conferred by only three amino-acids of OsCaM61.
    Li DF; Li J; Ma L; Zhang L; Lu YT
    FEBS Lett; 2006 Aug; 580(18):4325-31. PubMed ID: 16842786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutational analysis of conserved glycine residues 142, 143 and 146 reveals Gly(142) is critical for tetramerization of CTP synthase from Escherichia coli.
    Lunn FA; Macleod TJ; Bearne SL
    Biochem J; 2008 May; 412(1):113-21. PubMed ID: 18260824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.