These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 7765970)

  • 21. Purification and biochemical characterization of a novel mesophilic glucoamylase from Aspergillus tritici WZ99.
    Xian L; Feng JX
    Int J Biol Macromol; 2018 Feb; 107(Pt A):1122-1130. PubMed ID: 28951303
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Mechanism of Binding of Glucoamylase I from Aspergillus awamori var. kawachi to Cyclodextrins and Raw Starch.
    Goto M; Tanigawa K; Kanlayakrit W; Hayashida S
    Biosci Biotechnol Biochem; 1994 Jan; 58(1):49-54. PubMed ID: 27315704
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Production and purification of a granular-starch-binding domain of glucoamylase 1 from Aspergillus niger.
    Belshaw NJ; Williamson G
    FEBS Lett; 1990 Sep; 269(2):350-3. PubMed ID: 2119316
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural similarities in glucoamylase by hydrophobic cluster analysis.
    Coutinho PM; Reilly PJ
    Protein Eng; 1994 Jun; 7(6):749-60. PubMed ID: 7937705
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Starch-binding domain shuffling in Aspergillus niger glucoamylase.
    Cornett CA; Fang TY; Reilly PJ; Ford C
    Protein Eng; 2003 Jul; 16(7):521-9. PubMed ID: 12915730
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Studies on glucoamylase produced from Aspergillus awamori (NRRL-3112) and their effect on saccharification of potato starch.
    Kumar Soni S; Venkateswara Rao M; Das D
    Indian J Exp Biol; 1995 Dec; 33(12):957-61. PubMed ID: 8714078
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional and structural roles of the highly conserved Trp120 loop region of glucoamylase from Aspergillus awamori.
    Natarajan S; Sierks MR
    Biochemistry; 1996 Mar; 35(9):3050-8. PubMed ID: 8608145
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Separation and direct detection of raw and gelatinized starch hydrolyzing activities of glucoamylase on isoelectric focusing gels.
    Suresh C; Dubey AK; Kini R; Umesh-Kumar S; Karanth NG
    Electrophoresis; 1999 Mar; 20(3):483-5. PubMed ID: 10217158
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Expression in Aspergillus niger of the starch-binding domain of glucoamylase. Comparison with the proteolytically produced starch-binding domain.
    Le Gal-Coëffet MF; Jacks AJ; Sorimachi K; Williamson MP; Williamson G; Archer DB
    Eur J Biochem; 1995 Oct; 233(2):561-7. PubMed ID: 7588802
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Refined crystal structures of glucoamylase from Aspergillus awamori var. X100.
    Aleshin AE; Hoffman C; Firsov LM; Honzatko RB
    J Mol Biol; 1994 May; 238(4):575-91. PubMed ID: 8176747
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Promotive and inhibitory effects of raw starch adsorbable fragments from pancreatic alpha-amylase on enzymatic digestions of raw starch.
    Hayashida S; Teramoto Y; Kira I
    Agric Biol Chem; 1991 Jan; 55(1):1-6. PubMed ID: 1368657
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improvement of glucoamylase production for raw-starch digestion in Aspergillus niger F-01 by maltose stearic acid ester.
    Sun H; Peng M
    Biotechnol Lett; 2017 Apr; 39(4):561-566. PubMed ID: 28044224
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Properties of the raw-starch digesting amylase of Aspergillus sp. K-27: a synergistic action of glucoamylase and alpha-amylase.
    Abe JI; Nakajima K; Nagano H; Hizukuri S; Obata K
    Carbohydr Res; 1988 Apr; 175(1):85-92. PubMed ID: 3132328
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Properties of a purified thermostable glucoamylase from Aspergillus niveus.
    da Silva TM; Maller A; Damásio AR; Michelin M; Ward RJ; Hirata IY; Jorge JA; Terenzi HF; de Polizeli ML
    J Ind Microbiol Biotechnol; 2009 Dec; 36(12):1439-46. PubMed ID: 19697071
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A thermostable glucoamylase from Bispora sp. MEY-1 with stability over a broad pH range and significant starch hydrolysis capacity.
    Hua H; Luo H; Bai Y; Wang K; Niu C; Huang H; Shi P; Wang C; Yang P; Yao B
    PLoS One; 2014; 9(11):e113581. PubMed ID: 25415468
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Expression of a fungal glucoamylase in transgenic rice seeds.
    Xu X; Huang J; Fang J; Lin C; Cheng J; Shen Z
    Protein Expr Purif; 2008 Oct; 61(2):113-6. PubMed ID: 18588984
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular cloning and 3D structure prediction of the first raw-starch-degrading glucoamylase without a separate starch-binding domain.
    Hostinová E; Solovicová A; Dvorský R; Gasperík J
    Arch Biochem Biophys; 2003 Mar; 411(2):189-95. PubMed ID: 12623067
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Starch-binding domain of Aspergillus glucoamylase-I. Interaction with beta-cyclodextrin and maltoheptaose.
    Kusnadi AR; Chang HY; Nikolov ZL; Metzler DE; Metzler CM
    Ann N Y Acad Sci; 1994 May; 721():168-77. PubMed ID: 8010668
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evidence for a polysaccharide-binding domain in Hormoconis resinae glucoamylase P: effects of its proteolytic removal on substrate specificity and inhibition by beta-cyclodextrin.
    Fagerström R
    Microbiology (Reading); 1994 Sep; 140 ( Pt 9)():2399-407. PubMed ID: 7952191
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization and expression in Pichia pastoris of a raw starch degrading glucoamylase (GA2) derived from Aspergillus flavus NSH9.
    Karim KMR; Husaini A; Sing NN; Tasnim T; Mohd Sinang F; Hussain H; Hossain MA; Roslan H
    Protein Expr Purif; 2019 Dec; 164():105462. PubMed ID: 31351992
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.