These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 7765970)
41. Activity and thermal stability of genetically truncated forms of Aspergillus glucoamylase. Evans R; Ford C; Sierks M; Nikolov Z; Svensson B Gene; 1990 Jul; 91(1):131-4. PubMed ID: 2119327 [TBL] [Abstract][Full Text] [Related]
42. Substitution of asparagine residues in Aspergillus awamori glucoamylase by site-directed mutagenesis to eliminate N-glycosylation and inactivation by deamidation. Chen HM; Ford C; Reilly PJ Biochem J; 1994 Jul; 301 ( Pt 1)(Pt 1):275-81. PubMed ID: 8037681 [TBL] [Abstract][Full Text] [Related]
43. Thermodynamics of ligand binding to the starch-binding domain of glucoamylase from Aspergillus niger. Sigurskjold BW; Svensson B; Williamson G; Driguez H Eur J Biochem; 1994 Oct; 225(1):133-41. PubMed ID: 7925430 [TBL] [Abstract][Full Text] [Related]
44. Enzymatic properties of the cysteinesulfinic acid derivative of the catalytic-base mutant Glu400-->Cys of glucoamylase from Aspergillus awamori. Fierobe HP; Clarke AJ; Tull D; Svensson B Biochemistry; 1998 Mar; 37(11):3753-9. PubMed ID: 9521694 [TBL] [Abstract][Full Text] [Related]
45. Kinetics of the surface hydrolysis of raw starch by glucoamylase. Tatsumi H; Katano H J Agric Food Chem; 2005 Oct; 53(21):8123-7. PubMed ID: 16218653 [TBL] [Abstract][Full Text] [Related]
46. Microheterogeneity in O-type sugar chains of carbohydrases secreted by Asp. awamori. Neustroev KN; Golubev AM; Ibatullin FM; Moseichuk AV Biochem Mol Biol Int; 1993 May; 30(1):107-13. PubMed ID: 8358322 [TBL] [Abstract][Full Text] [Related]
47. Characterization of an organic solvent-tolerant thermostable glucoamylase from a halophilic isolate, Halolactibacillus sp. SK71 and its application in raw starch hydrolysis for bioethanol production. Yu HY; Li X Biotechnol Prog; 2014; 30(6):1262-8. PubMed ID: 25138675 [TBL] [Abstract][Full Text] [Related]
48. Adsorption to starch of a beta-galactosidase fusion protein containing the starch-binding region of Aspergillus glucoamylase. Chen LJ; Ford C; Nikolov Z Gene; 1991 Mar; 99(1):121-6. PubMed ID: 1902429 [TBL] [Abstract][Full Text] [Related]
49. Interaction of beta-cyclodextrin with the granular starch binding domain of glucoamylase. Belshaw NJ; Williamson G Biochim Biophys Acta; 1991 May; 1078(1):117-20. PubMed ID: 2049377 [TBL] [Abstract][Full Text] [Related]
50. Structural studies on the O-glycosidically linked carbohydrate chains of glucoamylase G1 from Aspergillus niger. Gunnarsson A; Svensson B; Nilsson B; Svensson S Eur J Biochem; 1984 Dec; 145(3):463-7. PubMed ID: 6439561 [TBL] [Abstract][Full Text] [Related]
51. The starch-binding domain from glucoamylase disrupts the structure of starch. Southall SM; Simpson PJ; Gilbert HJ; Williamson G; Williamson MP FEBS Lett; 1999 Mar; 447(1):58-60. PubMed ID: 10218582 [TBL] [Abstract][Full Text] [Related]
52. Glucoamylase: structure/function relationships, and protein engineering. Sauer J; Sigurskjold BW; Christensen U; Frandsen TP; Mirgorodskaya E; Harrison M; Roepstorff P; Svensson B Biochim Biophys Acta; 2000 Dec; 1543(2):275-293. PubMed ID: 11150611 [TBL] [Abstract][Full Text] [Related]
53. Mutations to alter Aspergillus awamori glucoamylase selectivity. II. Mutation of residues 119 and 121. Fang TY; Honzatko RB; Reilly PJ; Ford C Protein Eng; 1998 Feb; 11(2):127-33. PubMed ID: 9605547 [TBL] [Abstract][Full Text] [Related]
54. Stabilization of Aspergillus awamori glucoamylase by proline substitution and combining stabilizing mutations. Allen MJ; Coutinho PM; Ford CF Protein Eng; 1998 Sep; 11(9):783-8. PubMed ID: 9796827 [TBL] [Abstract][Full Text] [Related]
55. Raw starch fermentation to ethanol by an industrial distiller's yeast strain of Saccharomyces cerevisiae expressing glucoamylase and α-amylase genes. Kim HR; Im YK; Ko HM; Chin JE; Kim IC; Lee HB; Bai S Biotechnol Lett; 2011 Aug; 33(8):1643-8. PubMed ID: 21479627 [TBL] [Abstract][Full Text] [Related]
56. Improving the Catalytic Efficiency of Song W; Li Y; Tong Y; Li Y; Tao J; Rao S; Li J; Zhou J; Liu S J Agric Food Chem; 2022 Oct; 70(39):12672-12680. PubMed ID: 36154122 [TBL] [Abstract][Full Text] [Related]
57. Restoration of catalytic activity beyond wild-type level in glucoamylase from Aspergillus awamori by oxidation of the Glu400-->Cys catalytic-base mutant to cysteinesulfinic acid. Fierobe HP; Mirgorodskaya E; McGuire KA; Roepstorff P; Svensson B; Clarke AJ Biochemistry; 1998 Mar; 37(11):3743-52. PubMed ID: 9521693 [TBL] [Abstract][Full Text] [Related]
58. Chemoenzymatic synthesis of 6 omega-S-alpha-D-glucopyranosyl-6 omega-thiomaltooligosaccharides: their binding to Aspergillus niger glucoamylase G1 and its starch-binding domain. Apparu C; Driguez H; Williamson G; Svensson B Carbohydr Res; 1995 Nov; 277(2):313-20. PubMed ID: 8556738 [TBL] [Abstract][Full Text] [Related]
59. Refined structure for the complex of D-gluco-dihydroacarbose with glucoamylase from Aspergillus awamori var. X100 to 2.2 A resolution: dual conformations for extended inhibitors bound to the active site of glucoamylase. Stoffer B; Aleshin AE; Firsov LM; Svensson B; Honzatko RB FEBS Lett; 1995 Jan; 358(1):57-61. PubMed ID: 7821430 [TBL] [Abstract][Full Text] [Related]
60. Utilization of agricultural wastes of Aspergillus awamori for the production of glucoamylase. Attia RM; Ali SA Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1977; 132(4):322-5. PubMed ID: 333823 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]