BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 7766099)

  • 1. Microbial reduction of sulfur dioxide with anaerobically digested municipal sewage biosolids as electron donors.
    Selvaraj PT; Sublette KL
    Biotechnol Prog; 1995; 11(2):153-8. PubMed ID: 7766099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodesulfurization of flue gases and other sulfate/sulfite waste streams using immobilized mixed sulfate-reducing bacteria.
    Selvaraj PT; Little MH; Kaufman EN
    Biotechnol Prog; 1997; 13(5):583-9. PubMed ID: 9376112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial reduction of sulfur dioxide with pretreated sewage sludge and elemental hydrogen as electron donors.
    Deshmane V; Lee CM; Sublette KL
    Appl Biochem Biotechnol; 1993; 39-40():739-52. PubMed ID: 8323272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial conversion of sulfur dioxide in flue gas to sulfide using bulk drug industry wastewater as an organic source by mixed cultures of sulfate reducing bacteria.
    Rao AG; Ravichandra P; Joseph J; Jetty A; Sarma PN
    J Hazard Mater; 2007 Aug; 147(3):718-25. PubMed ID: 17324510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A biological process for the reclamation of flue gas desulfurization gypsum using mixed sulfate-reducing bacteria with inexpensive carbon sources.
    Kaufman EN; Little MH; Selvaraj P
    Appl Biochem Biotechnol; 1997; 63-65():677-93. PubMed ID: 18576124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous combined microbial removal of sulfur dioxide and nitric oxide from a gas stream.
    Lee KH; Sublette KL
    Appl Biochem Biotechnol; 1991; 28-29():623-34. PubMed ID: 1929381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemistry, physiology and biotechnology of sulfate-reducing bacteria.
    Barton LL; Fauque GD
    Adv Appl Microbiol; 2009; 68():41-98. PubMed ID: 19426853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth of sulfate-reducing bacteria with solid-phase electron acceptors.
    Karnachuk OV; Kurochkina SY; Tuovinen OH
    Appl Microbiol Biotechnol; 2002 Mar; 58(4):482-6. PubMed ID: 11954795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polysulfide reduction using sulfate-reducing bacteria in a photocatalytic hydrogen generation system.
    Takahashi Y; Suto K; Inoue C; Chida T
    J Biosci Bioeng; 2008 Sep; 106(3):219-25. PubMed ID: 18929995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can microbially-generated hydrogen sulfide account for the rates of U(VI) reduction by a sulfate-reducing bacterium?
    Boonchayaanant B; Gu B; Wang W; Ortiz ME; Criddle CS
    Biodegradation; 2010 Feb; 21(1):81-95. PubMed ID: 19597947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An economic analysis of microbial reduction of sulfur dioxide as a means of byproduct recovery from regenerable processes for flue gas desulfurization.
    Sublette KL; Gwozdz KJ
    Appl Biochem Biotechnol; 1991; 28-29():635-46. PubMed ID: 1929382
    [No Abstract]   [Full Text] [Related]  

  • 13. Simultaneous removal of NO(x) and SO2 in exhausted gas through landfill leachate.
    Han Y; Zhang W
    Indian J Exp Biol; 2010 Dec; 48(12):1237-42. PubMed ID: 21250607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of bacteria involved in the biological sulfur cycle for paper mill effluent purification.
    Janssen AJ; Lens PN; Stams AJ; Plugge CM; Sorokin DY; Muyzer G; Dijkman H; Van Zessen E; Luimes P; Buisman CJ
    Sci Total Environ; 2009 Feb; 407(4):1333-43. PubMed ID: 19027933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a novel process for the biological conversion of H2S and methanethiol to elemental sulfur.
    Sipma J; Janssen AJ; Pol LW; Lettinga G
    Biotechnol Bioeng; 2003 Apr; 82(1):1-11. PubMed ID: 12569619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological leaching of heavy metals from anaerobically digested sewage sludge using indigenous sulfur-oxidizing bacteria and sulfur waste in a closed system.
    Kitada K; Ito A; Yamada K; Aizawa J; Umita T
    Water Sci Technol; 2001; 43(2):59-65. PubMed ID: 11380206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biological conversion of anglesite (PbSO(4)) and lead waste from spent car batteries to galena (PbS).
    Weijma J; De Hoop K; Bosma W; Dijkman H
    Biotechnol Prog; 2002; 18(4):770-5. PubMed ID: 12153311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen sulfide production from elemental sulfur by Desulfovibrio desulfuricans in an anaerobic bioreactor.
    Escobar C; Bravo L; Hernández J; Herrera L
    Biotechnol Bioeng; 2007 Oct; 98(3):569-77. PubMed ID: 17421040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anaerobic degradation of landfill leachate using an upflow anaerobic fixed-bed reactor with microbial sulfate reduction.
    Thabet OB; Bouallagui H; Cayol JL; Ollivier B; Fardeau ML; Hamdi M
    J Hazard Mater; 2009 Aug; 167(1-3):1133-40. PubMed ID: 19272702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fermentative hydrogen gas production using biosolids pellets as the inoculum source.
    Kalogo Y; Bagley DM
    Bioresour Technol; 2008 Feb; 99(3):540-6. PubMed ID: 17336058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.