BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 7766134)

  • 1. Stability studies and effect of the initial oleic acid concentration on lipase production by Candida rugosa.
    Gordillo MA; Obradors N; Montesinos JL; Valero F; Lafuente J; Solà C
    Appl Microbiol Biotechnol; 1995 Apr; 43(1):38-41. PubMed ID: 7766134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on a novel carbon source and cosolvent for lipase production by Candida rugosa.
    Wei D; Zhang LY; Song Q
    J Ind Microbiol Biotechnol; 2004 Mar; 31(3):133-6. PubMed ID: 15069604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving lipase production from Candida rugosa by a biochemical engineering approach.
    Gordillo MA; Montesinos JL; Casas C; Valero F; Lafuente J; Solà C
    Chem Phys Lipids; 1998 Jun; 93(1-2):131-42. PubMed ID: 9720255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of lipase by high cell density fed-batch culture of Candida cylindracea.
    Kim BS; Hou CT
    Bioprocess Biosyst Eng; 2006 Jun; 29(1):59-64. PubMed ID: 16583200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rational strategy for the production of new crude lipases from Candida rugosa.
    de María PD; Sánchez-Montero JM; Alcántara AR; Valero F; Sinisterra JV
    Biotechnol Lett; 2005 Apr; 27(7):499-503. PubMed ID: 15928857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of inoculation strategy on the progress of Candida rugosa cultivation.
    Takaç S; Erdem B; Unlü AE
    Artif Cells Blood Substit Immobil Biotechnol; 2009; 37(3):130-7. PubMed ID: 19412822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational approach to solvent-free synthesis of ethyl oleate using Candida rugosa and Candida antarctica B Lipases. I. Interfacial activation and substrate (ethanol, oleic acid) adsorption.
    Foresti ML; Ferreira ML
    Biomacromolecules; 2004; 5(6):2366-75. PubMed ID: 15530053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymatic esterification of oleic acid by Candida rugosa lipase immobilized onto biochar.
    Cea M; González ME; Abarzúa M; Navia R
    J Environ Manage; 2019 Jul; 242():171-177. PubMed ID: 31035179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of native and recombinant lipases by Candida rugosa: a review.
    Ferrer P; Montesinos JL; Valero F; Solà C
    Appl Biochem Biotechnol; 2001 Sep; 95(3):221-55. PubMed ID: 11732718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiological control on the expression and secretion of Candida rugosa lipase.
    Lotti M; Monticelli S; Montesinos JL; Brocca S; Valero F; Lafuente J
    Chem Phys Lipids; 1998 Jun; 93(1-2):143-8. PubMed ID: 9720256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of Candida rugosa lipase production by using different control fed-batch operational strategies.
    Gordillo MA; Sanz A; Sánchez A; Valero F; Montesinos JL; Lafuente J; Solá C
    Biotechnol Bioeng; 1998 Oct; 60(2):156-68. PubMed ID: 10099417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of the production and characterization of lipase from Candida rugosa and Geotrichum candidum in soybean molasses by submerged fermentation.
    de Morais WG; Kamimura ES; Ribeiro EJ; Pessela BC; Cardoso VL; de Resende MM
    Protein Expr Purif; 2016 Jul; 123():26-34. PubMed ID: 27057641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Studies on lipase production from Candida rugosa].
    Song QX; Lin JP; Rong YP; Wei DZ
    Sheng Wu Gong Cheng Xue Bao; 2001 Jan; 17(1):101-4. PubMed ID: 11330177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Candida rugosa lipase LIP1-catalyzed transesterification to produce human milk fat substitute.
    Srivastava A; Akoh CC; Chang SW; Lee GC; Shaw JF
    J Agric Food Chem; 2006 Jul; 54(14):5175-81. PubMed ID: 16819932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Covalent immobilization of Candida rugosa lipase on aldehyde functionalized hydrophobic support and the application for synthesis of oleic acid ester.
    Temoçin Z
    J Biomater Sci Polym Ed; 2013; 24(14):1618-35. PubMed ID: 23574345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Candida rugosa Lipase Immobilized onto Acid-Functionalized Multi-walled Carbon Nanotubes for Sustainable Production of Methyl Oleate.
    Che Marzuki NH; Mahat NA; Huyop F; Buang NA; Wahab RA
    Appl Biochem Biotechnol; 2015 Oct; 177(4):967-84. PubMed ID: 26267406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymatic synthesizing of phytosterol oleic esters.
    Pan X; Chen B; Wang J; Zhang X; Zhul B; Tan T
    Appl Biochem Biotechnol; 2012 Sep; 168(1):68-77. PubMed ID: 21822658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ethyl oleate synthesis using Candida rugosa lipase in a solvent-free system. Role of hydrophobic interactions.
    Trubiano G; Borio D; Ferreira ML
    Biomacromolecules; 2004; 5(5):1832-40. PubMed ID: 15360295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of medium composition for lipase production by Candida rugosa NCIM 3462 using response surface methodology.
    Rajendran A; Thangavelu V
    Can J Microbiol; 2007 May; 53(5):643-55. PubMed ID: 17668023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acid lipase from Candida viswanathii: production, biochemical properties, and potential application.
    de Almeida AF; Tauk-Tornisielo SM; Carmona EC
    Biomed Res Int; 2013; 2013():435818. PubMed ID: 24350270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.