These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 7766199)
1. Effects of normal and their branched alcohols with structurally minimal variation on kinetic parameters in thermolysin-catalyzed peptide hydrolysis and synthesis of N-(benzyloxycarbonyl)-L-phenylalanyl-L-phenylalanine and its methyl ester. Inagaki T; Tadasa K; Kayahara H Biosci Biotechnol Biochem; 1995 Mar; 59(3):535-7. PubMed ID: 7766199 [TBL] [Abstract][Full Text] [Related]
2. Differential effects of organic co-solvents on peptide synthesis and hydrolysis by thermolysin. Nevin DE; Beynon RJ Biomed Biochim Acta; 1991; 50(10-11):S118-21. PubMed ID: 1820031 [TBL] [Abstract][Full Text] [Related]
3. Kinetics of enzymatic synthesis of peptides in aqueous/organic biphasic systems. Thermolysin-catalyzed synthesis of N-(benzyloxycarbonyl)-L-phenylalanyl-L-phenylalanine methyl ester. Nakanishi K; Matsuno R Eur J Biochem; 1986 Dec; 161(3):533-40. PubMed ID: 3792307 [TBL] [Abstract][Full Text] [Related]
4. Kinetics and equilibrium of enzymatic synthesis of peptides in aqueous/organic biphasic systems. Thermolysin-catalyzed synthesis of N-(benzyloxycarbonyl)-L-aspartyl-L-phenylalanine methyl ester. Nakanishi K; Kimura Y; Matsuno R Eur J Biochem; 1986 Dec; 161(3):541-9. PubMed ID: 3792308 [TBL] [Abstract][Full Text] [Related]
5. Boilysin and thermolysin in dipeptide synthesis: a comparative study. Kühn D; Dürrschmidt P; Mansfeld J; Ulbrich-Hofmann R Biotechnol Appl Biochem; 2002 Aug; 36(1):71-6. PubMed ID: 12149125 [TBL] [Abstract][Full Text] [Related]
6. Effects of pH, temperature, and alcohols on the remarkable activation of thermolysin by salts. Inouye K; Lee SB; Nambu K; Tonomura B J Biochem; 1997 Aug; 122(2):358-64. PubMed ID: 9378714 [TBL] [Abstract][Full Text] [Related]
7. Solvent selection for solid-to-solid synthesis. Ulijn RV; De Martin L; Gardossi L; Janssen AE; Moore BD; Halling PJ Biotechnol Bioeng; 2002 Dec; 80(5):509-15. PubMed ID: 12355461 [TBL] [Abstract][Full Text] [Related]
8. Effects of salts on thermolysin: activation of hydrolysis and synthesis of N-carbobenzoxy-L-aspartyl-L-phenylalanine methyl ester, and a unique change in the absorption spectrum of thermolysin. Inouye K J Biochem; 1992 Sep; 112(3):335-40. PubMed ID: 1429520 [TBL] [Abstract][Full Text] [Related]
9. Peptide synthesis in organic solvents with an immobilized enzyme. Nakanisi K; Nagayasu T Biomed Biochim Acta; 1991; 50(10-11):S50-4. PubMed ID: 1820060 [TBL] [Abstract][Full Text] [Related]
10. Peptide synthesis with halophenylalanines by thermolysin. Imaoka Y; Kawamoto T; Ueda M; Tanaka A Appl Microbiol Biotechnol; 1994 Jan; 40(5):653-6. PubMed ID: 7764424 [TBL] [Abstract][Full Text] [Related]
11. Kinetics of hydrolysis of dansyl peptide substrates by thermolysin: analysis of fluorescence changes and determination of steady-state kinetic parameters. Yang JJ; Van Wart HE Biochemistry; 1994 May; 33(21):6508-15. PubMed ID: 8204585 [TBL] [Abstract][Full Text] [Related]
12. Thermolysin-catalyzed peptide bond synthesis. Wayne SI; Fruton JS Proc Natl Acad Sci U S A; 1983 Jun; 80(11):3241-4. PubMed ID: 6574483 [TBL] [Abstract][Full Text] [Related]
13. Arazoformyl dipeptide substrates for thermolysin. Confirmation of a reverse protonation catalytic mechanism. Mock WL; Stanford DJ Biochemistry; 1996 Jun; 35(23):7369-77. PubMed ID: 8652513 [TBL] [Abstract][Full Text] [Related]
14. Effect of glycerol on thermolysin-catalyzed peptide bond synthesis. Durrant I; Beynon RJ; Rodgers PB Arch Biochem Biophys; 1986 Nov; 250(2):280-5. PubMed ID: 3777937 [TBL] [Abstract][Full Text] [Related]
15. Thermolysin catalyzed semisynthesis of peptide hormones by introduction of Phe-NH2 or Tyr-NH2 at the carboxyl termini. Morihara K Biomed Biochim Acta; 1991; 50(10-11):S15-8. PubMed ID: 1820038 [TBL] [Abstract][Full Text] [Related]
16. Comparison of methods for thermolysin-catalyzed peptide synthesis including a novel more active catalyst. Ulijn RV; Erbeldinger M; Halling PJ Biotechnol Bioeng; 2000 Sep; 69(6):633-8. PubMed ID: 10918138 [TBL] [Abstract][Full Text] [Related]
17. Kinetic study of the alpha-chymotrypsin-catalyzed hydrolysis and synthesis of a peptide bond in a monophasic aqueous/organic reaction medium. Deschrevel B; Vincent JC; Thellier M Arch Biochem Biophys; 1993 Jul; 304(1):45-52. PubMed ID: 8323297 [TBL] [Abstract][Full Text] [Related]
18. The influence of water on protease-catalyzed peptide synthesis in acetonitrile/water mixtures. Reslow M; Adlercreutz P; Mattiasson B Eur J Biochem; 1988 Nov; 177(2):313-8. PubMed ID: 3056721 [TBL] [Abstract][Full Text] [Related]
19. Effects of water-miscible solvents and polyhydroxy compounds on the structure and enzymatic activity of thermolysin. Pazhang M; Khajeh K; Ranjbar B; Hosseinkhani S J Biotechnol; 2006 Dec; 127(1):45-53. PubMed ID: 16860424 [TBL] [Abstract][Full Text] [Related]
20. Kinetics and equilibrium for thermolysin-catalyzed syntheses of dipeptide precursors in aqueous/organic biphasic systems. Miyanaga M; Ohmori M; Imamura K; Sakiyama T; Nakanishi K J Biosci Bioeng; 2000; 90(1):43-51. PubMed ID: 16232816 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]