These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 7766284)

  • 41. Nuclear organization of the substantia nigra, ventral tegmental area and retrorubral field of the common marmoset (Callithrix jacchus): A cytoarchitectonic and TH-immunohistochemistry study.
    Cavalcanti JRLP; Pontes ALB; Fiuza FP; Silva KDA; Guzen FP; Lucena EES; Nascimento-JĂșnior ES; Cavalcante JC; Costa MSMO; Engelberth RCGJ; Cavalcante JS
    J Chem Neuroanat; 2016 Nov; 77():100-109. PubMed ID: 27292410
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Deletion of the vesicular acetylcholine transporter from pedunculopontine/laterodorsal tegmental neurons modifies gait.
    Janickova H; Rosborough K; Al-Onaizi M; Kljakic O; Guzman MS; Gros R; Prado MA; Prado VF
    J Neurochem; 2017 Mar; 140(5):787-798. PubMed ID: 27889925
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cholinergic control of morphine-induced locomotion in rostromedial tegmental nucleus versus ventral tegmental area sites.
    Wasserman DI; Wang HG; Rashid AJ; Josselyn SA; Yeomans JS
    Eur J Neurosci; 2013 Sep; 38(5):2774-85. PubMed ID: 23773170
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cardiovascular depressor responses to stimulation of substantia nigra and ventral tegmental area.
    Kirouac GJ; Ciriello J
    Am J Physiol; 1997 Dec; 273(6):H2549-57. PubMed ID: 9435586
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Development and distribution of noradrenergic and cholinergic neurons and their trophic phenotypes in the avian ceruleus complex and midbrain tegmentum.
    von Bartheld CS; Bothwell M
    J Comp Neurol; 1992 Jun; 320(4):479-500. PubMed ID: 1321173
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Stimulant-induced psychosis, the dopamine theory of schizophrenia, and the habenula.
    Ellison G
    Brain Res Brain Res Rev; 1994 May; 19(2):223-39. PubMed ID: 7914793
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cholinergic hyperactivity and negative schizophrenic symptoms. A model of cholinergic/dopaminergic interactions in schizophrenia.
    Tandon R; Greden JF
    Arch Gen Psychiatry; 1989 Aug; 46(8):745-53. PubMed ID: 2665688
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Markers of muscarinic deficit for individualized treatment in schizophrenia.
    Stuke H
    Front Psychiatry; 2022; 13():1100030. PubMed ID: 36699495
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Neurocognitive and neurophysiological endophenotypes in schizophrenia: An overview.
    Donati FL; D'Agostino A; Ferrarelli F
    Biomark Neuropsychiatry; 2020 Dec; 3():. PubMed ID: 37293386
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cross-diagnostic determinants of cognitive functioning: the muscarinic cholinergic receptor as a model system.
    Jones SE; Harvey PD
    Transl Psychiatry; 2023 Mar; 13(1):100. PubMed ID: 36973270
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dopamine and Beyond: Implications of Psychophysical Studies of Intracranial Self-Stimulation for the Treatment of Depression.
    Pallikaras V; Shizgal P
    Brain Sci; 2022 Aug; 12(8):. PubMed ID: 36009115
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Hyoscine butylbromide induced psychosis: A case report.
    Lageju N; Neupane D; Jaiswal LS; Phuyal U
    Clin Case Rep; 2022 May; 10(5):e05807. PubMed ID: 35540718
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Pedunculopontine-induced cortical decoupling as the neurophysiological locus of dissociation.
    Smith DM; Terhune DB
    Psychol Rev; 2023 Jan; 130(1):183-210. PubMed ID: 35084921
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Neuromodulation of Persistent Activity and Working Memory Circuitry in Primate Prefrontal Cortex by Muscarinic Receptors.
    Vijayraghavan S; Everling S
    Front Neural Circuits; 2021; 15():648624. PubMed ID: 33790746
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Positive allosteric modulation of M
    Yohn SE; Conn PJ
    Neuropharmacology; 2018 Jul; 136(Pt C):438-448. PubMed ID: 28893562
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Drug Abuse and Psychosis: New Insights into Drug-induced Psychosis.
    Ham S; Kim TK; Chung S; Im HI
    Exp Neurobiol; 2017 Feb; 26(1):11-24. PubMed ID: 28243163
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cholinergic Mesopontine Signals Govern Locomotion and Reward through Dissociable Midbrain Pathways.
    Xiao C; Cho JR; Zhou C; Treweek JB; Chan K; McKinney SL; Yang B; Gradinaru V
    Neuron; 2016 Apr; 90(2):333-47. PubMed ID: 27100197
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hippocampal Non-Theta-Contingent Eyeblink Classical Conditioning: A Model System for Neurobiological Dysfunction.
    Cicchese JJ; Berry SD
    Front Psychiatry; 2016; 7():1. PubMed ID: 26903886
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Microglia-Mediated Inflammation and Neurodegenerative Disease.
    Xu L; He D; Bai Y
    Mol Neurobiol; 2016 Dec; 53(10):6709-6715. PubMed ID: 26659872
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Involvement of cholinergic system in hyperactivity in dopamine-deficient mice.
    Hagino Y; Kasai S; Fujita M; Setogawa S; Yamaura H; Yanagihara D; Hashimoto M; Kobayashi K; Meltzer HY; Ikeda K
    Neuropsychopharmacology; 2015 Mar; 40(5):1141-50. PubMed ID: 25367503
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.