These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 7766675)
1. On the reduction potentials of Fe and Cu-Zn containing superoxide dismutases. Verhagen MF; Meussen ET; Hagen WR Biochim Biophys Acta; 1995 May; 1244(1):99-103. PubMed ID: 7766675 [TBL] [Abstract][Full Text] [Related]
2. Potentiometric titrations and oxidation-reduction potentials of manganese and copper-zinc superoxide dismutases. Lawrence GD; Sawyer DT Biochemistry; 1979 Jul; 18(14):3045-50. PubMed ID: 380641 [TBL] [Abstract][Full Text] [Related]
3. A facilitated electron transfer of copper--zinc superoxide dismutase (SOD) based on a cysteine-bridged SOD electrode. Tian Y; Shioda M; Kasahara S; Okajima T; Mao L; Hisabori T; Ohsaka T Biochim Biophys Acta; 2002 Jan; 1569(1-3):151-8. PubMed ID: 11853969 [TBL] [Abstract][Full Text] [Related]
4. Mechanism and atomic structure of superoxide dismutase. Roberts VA; Fisher CL; Redford SM; McRee DE; Parge HE; Getzoff ED; Tainer JA Free Radic Res Commun; 1991; 12-13 Pt 1():269-78. PubMed ID: 1649094 [TBL] [Abstract][Full Text] [Related]
5. pH-dependent migration of copper(II) to the vacant zinc-binding site of zinc-free bovine erythrocyte superoxide dismutase. Valentine JS; Pantoliano MW; McDonnell PJ; Burger AR; Lippard SJ Proc Natl Acad Sci U S A; 1979 Sep; 76(9):4245-9. PubMed ID: 41239 [TBL] [Abstract][Full Text] [Related]
6. Involvement of the copper in the inhibition of Cu,Zn superoxide dismutase activity at high pH. Calabrese L; Polticelli F; Capo C; Musci G Free Radic Res Commun; 1991; 12-13 Pt 1():305-12. PubMed ID: 1649097 [TBL] [Abstract][Full Text] [Related]
7. Selective inhibition of Fe- versus Cu/Zn-superoxide dismutases by 2,3-dihydroxybenzoic acid derivatives. Soulère L; Viodé C; Périé J; Hoffmann P Chem Pharm Bull (Tokyo); 2002 May; 50(5):578-82. PubMed ID: 12036008 [TBL] [Abstract][Full Text] [Related]
8. Role of the dimeric structure in Cu,Zn superoxide dismutase. pH-dependent, reversible denaturation of the monomeric enzyme from Escherichia coli. Battistoni A; Folcarelli S; Cervoni L; Polizio F; Desideri A; Giartosio A; Rotilio G J Biol Chem; 1998 Mar; 273(10):5655-61. PubMed ID: 9488695 [TBL] [Abstract][Full Text] [Related]
9. Electrochemistry and electrocatalytic activities of superoxide dismutases at gold electrodes modified with a self-assembled monolayer. Tian Y; Mao L; Okajima T; Ohsaka T Anal Chem; 2004 Jul; 76(14):4162-8. PubMed ID: 15253658 [TBL] [Abstract][Full Text] [Related]
10. Studies on the reconstitution of bovine erythrocyte superoxide dismutase. V. Preparation and properties of derivatives in which both zinc and copper sites contain copper. Fee JA; Briggs RG Biochim Biophys Acta; 1975 Aug; 400(2):439-50. PubMed ID: 169909 [TBL] [Abstract][Full Text] [Related]
11. On the coordination and oxidation states of the active-site copper ion in prokaryotic Cu,Zn superoxide dismutases. Stroppolo ME; Nuzzo S; Pesce A; Rosano C; Battistoni A; Bolognesi M; Mobilio S; Desideri A Biochem Biophys Res Commun; 1998 Aug; 249(3):579-82. PubMed ID: 9731178 [TBL] [Abstract][Full Text] [Related]
12. Cu,Zn superoxide dismutase from Photobacterium leiognathi is an hyperefficient enzyme. Stroppolo ME; Sette M; O'Neill P; Polizio F; Cambria MT; Desideri A Biochemistry; 1998 Sep; 37(35):12287-92. PubMed ID: 9724543 [TBL] [Abstract][Full Text] [Related]
13. Electrostatic recognition in redox copper proteins: a 1H NMR study of the protonation behavior of His 19 in oxidized and reduced Cu,Zn superoxide dismutase. Desideri A; Polticelli F; Falconi M; Sette M; Ciriolo MR; Paci M; Rotilio G Arch Biochem Biophys; 1993 Mar; 301(2):244-50. PubMed ID: 8384828 [TBL] [Abstract][Full Text] [Related]
14. Redox tuning over almost 1 V in a structurally conserved active site: lessons from Fe-containing superoxide dismutase. Miller AF Acc Chem Res; 2008 Apr; 41(4):501-10. PubMed ID: 18376853 [TBL] [Abstract][Full Text] [Related]
15. Electron transfer facilitated by superoxide dismutase: a model for membrane redox systems? Peterson DA; Eaton JW Biochem Biophys Res Commun; 1989 Nov; 165(1):164-7. PubMed ID: 2556133 [TBL] [Abstract][Full Text] [Related]
16. Chemistry and biochemistry of superoxide dismutases. Hassan HM; Fridovich I Eur J Rheumatol Inflamm; 1981; 4(2):160-72. PubMed ID: 7343318 [TBL] [Abstract][Full Text] [Related]
17. Sequence homologies among bacterial and mitochondrial superoxide dismutases. Steinman HM; Hill RL Proc Natl Acad Sci U S A; 1973 Dec; 70(12):3725-9. PubMed ID: 4590170 [TBL] [Abstract][Full Text] [Related]
18. Electrostatic interactions in Cu,Zn superoxide dismutase. Effects of Ca(II) and of anions not binding to the copper. Cocco D; Calabrese L; Finazzi-Agrò A; Rotilio G Biochim Biophys Acta; 1983 Jul; 746(1-2):61-4. PubMed ID: 6307383 [TBL] [Abstract][Full Text] [Related]
19. Copper-zinc alloy nanoparticle based enzyme-free superoxide radical sensing on a screen-printed electrode. Derkus B; Emregul E; Emregul KC Talanta; 2015 Mar; 134():206-214. PubMed ID: 25618659 [TBL] [Abstract][Full Text] [Related]
20. Electrochemistry of immobilized CuZnSOD and FeSOD and their interaction with superoxide radicals. Ge B; Scheller FW; Lisdat F Biosens Bioelectron; 2003 Mar; 18(2-3):295-302. PubMed ID: 12485776 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]