These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 7766676)
21. The rice FISH BONE gene encodes a tryptophan aminotransferase, which affects pleiotropic auxin-related processes. Yoshikawa T; Ito M; Sumikura T; Nakayama A; Nishimura T; Kitano H; Yamaguchi I; Koshiba T; Hibara K; Nagato Y; Itoh J Plant J; 2014 Jun; 78(6):927-36. PubMed ID: 24654985 [TBL] [Abstract][Full Text] [Related]
22. Organization of the ipdC region regulates IAA levels in different Azospirillum brasilense strains: molecular and functional analysis of ipdC in strain SM. Malhotra M; Srivastava S Environ Microbiol; 2008 May; 10(5):1365-73. PubMed ID: 18248455 [TBL] [Abstract][Full Text] [Related]
23. Indole-3-acetic acid biosynthesis in the biocontrol strain Pseudomonas fluorescens Psd and plant growth regulation by hormone overexpression. Kochar M; Upadhyay A; Srivastava S Res Microbiol; 2011 May; 162(4):426-35. PubMed ID: 21397014 [TBL] [Abstract][Full Text] [Related]
24. Characterization of phenylpyruvate decarboxylase, involved in auxin production of Azospirillum brasilense. Spaepen S; Versées W; Gocke D; Pohl M; Steyaert J; Vanderleyden J J Bacteriol; 2007 Nov; 189(21):7626-33. PubMed ID: 17766418 [TBL] [Abstract][Full Text] [Related]
25. Transcriptional analysis of the Azospirillum brasilense indole-3-pyruvate decarboxylase gene and identification of a cis-acting sequence involved in auxin responsive expression. Vande Broek A; Gysegom P; Ona O; Hendrickx N; Prinsen E; Van Impe J; Vanderleyden J Mol Plant Microbe Interact; 2005 Apr; 18(4):311-23. PubMed ID: 15828683 [TBL] [Abstract][Full Text] [Related]
26. Purification, characterization, and gene cloning of 4-hydroxybenzoate decarboxylase of Enterobacter cloacae P240. Matsui T; Yoshida T; Hayashi T; Nagasawa T Arch Microbiol; 2006 Jul; 186(1):21-9. PubMed ID: 16758158 [TBL] [Abstract][Full Text] [Related]
27. The role of residues glutamate-50 and phenylalanine-496 in Zymomonas mobilis pyruvate decarboxylase. Candy JM; Koga J; Nixon PF; Duggleby RG Biochem J; 1996 May; 315 ( Pt 3)(Pt 3):745-51. PubMed ID: 8645153 [TBL] [Abstract][Full Text] [Related]
28. Intermediates and transition states in thiamin diphosphate-dependent decarboxylases. A kinetic and NMR study on wild-type indolepyruvate decarboxylase and variants using indolepyruvate, benzoylformate, and pyruvate as substrates. Schütz A; Golbik R; König S; Hübner G; Tittmann K Biochemistry; 2005 Apr; 44(16):6164-79. PubMed ID: 15835904 [TBL] [Abstract][Full Text] [Related]
30. Multiple modes of active center communication in thiamin diphosphate-dependent enzymes. Jordan F; Nemeria NS; Sergienko E Acc Chem Res; 2005 Sep; 38(9):755-63. PubMed ID: 16171318 [TBL] [Abstract][Full Text] [Related]
31. Screening, cloning, expression, and purification of an acidic arylmalonate decarboxylase from Enterobacter cloacae KU1313. Yatake Y; Miyamoto K; Ohta H Appl Microbiol Biotechnol; 2008 Apr; 78(5):793-9. PubMed ID: 18283449 [TBL] [Abstract][Full Text] [Related]
32. Microbial synthesis and degradation of indole-3-acetic acid. I. The conversion of L-tryptophan to indole-3-acetamide by an enzyme system from Pseudomonas savastanoi. Kosuge T; Heskett MG; Wilson EE J Biol Chem; 1966 Aug; 241(16):3738-44. PubMed ID: 5916389 [No Abstract] [Full Text] [Related]
33. Regioselective carboxylation of catechol by 3,4-dihydroxybenzoate decarboxylase of Enterobacter cloacae P. Yoshida T; Inami Y; Matsui T; Nagasawa T Biotechnol Lett; 2010 May; 32(5):701-5. PubMed ID: 20131080 [TBL] [Abstract][Full Text] [Related]
34. IAA-synthase, an enzyme complex from Arabidopsis thaliana catalyzing the formation of indole-3-acetic acid from (S)-tryptophan. Müller A; Weiler EW Biol Chem; 2000 Aug; 381(8):679-86. PubMed ID: 11030425 [TBL] [Abstract][Full Text] [Related]
35. Tryptophan, thiamine and indole-3-acetic acid exchange between Chlorella sorokiniana and the plant growth-promoting bacterium Azospirillum brasilense. Palacios OA; Gomez-Anduro G; Bashan Y; de-Bashan LE FEMS Microbiol Ecol; 2016 Jun; 92(6):fiw077. PubMed ID: 27090758 [TBL] [Abstract][Full Text] [Related]
36. Growth and indole-3-acetic acid biosynthesis of Azospirillum brasilense Sp245 is environmentally controlled. Ona O; Van Impe J; Prinsen E; Vanderleyden J FEMS Microbiol Lett; 2005 May; 246(1):125-32. PubMed ID: 15869971 [TBL] [Abstract][Full Text] [Related]
37. Indoleacetate decarboxylase is a glycyl radical enzyme catalysing the formation of malodorant skatole. Liu D; Wei Y; Liu X; Zhou Y; Jiang L; Yin J; Wang F; Hu Y; Nanjaraj Urs AN; Liu Y; Ang EL; Zhao S; Zhao H; Zhang Y Nat Commun; 2018 Oct; 9(1):4224. PubMed ID: 30310076 [TBL] [Abstract][Full Text] [Related]
38. Indole-3-acetic acid in plant-microbe interactions. Duca D; Lorv J; Patten CL; Rose D; Glick BR Antonie Van Leeuwenhoek; 2014 Jul; 106(1):85-125. PubMed ID: 24445491 [TBL] [Abstract][Full Text] [Related]
39. Structure-function relationships in pyruvate decarboxylase of yeast and wheat germ. Ullrich J Ann N Y Acad Sci; 1982; 378():287-305. PubMed ID: 6805384 [No Abstract] [Full Text] [Related]
40. Yucasin is a potent inhibitor of YUCCA, a key enzyme in auxin biosynthesis. Nishimura T; Hayashi K; Suzuki H; Gyohda A; Takaoka C; Sakaguchi Y; Matsumoto S; Kasahara H; Sakai T; Kato J; Kamiya Y; Koshiba T Plant J; 2014 Feb; 77(3):352-66. PubMed ID: 24299123 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]