These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
254 related articles for article (PubMed ID: 7766876)
21. Centromeric repetitive sequences in Arabidopsis thaliana. Murata M; Ogura Y; Motoyoshi F Jpn J Genet; 1994 Aug; 69(4):361-70. PubMed ID: 7545957 [TBL] [Abstract][Full Text] [Related]
22. Structure and evolution of a highly repetitive DNA sequence from Brassica napus. Xia X; Selvaraj G; Bertrand H Plant Mol Biol; 1993 Jan; 21(2):213-24. PubMed ID: 8425054 [TBL] [Abstract][Full Text] [Related]
23. The first characterisation of the overall variability of repetitive units in a species reveals unexpected features of satellite DNA. Feliciello I; Picariello O; Chinali G Gene; 2005 Apr; 349():153-64. PubMed ID: 15777738 [TBL] [Abstract][Full Text] [Related]
24. Molecular cytogenetics and tandem repeat sequence evolution in the allopolyploid Nicotiana rustica compared with diploid progenitors N. paniculata and N. undulata. Lim KY; Matyasek R; Kovarik A; Fulnecek J; Leitch AR Cytogenet Genome Res; 2005; 109(1-3):298-309. PubMed ID: 15753590 [TBL] [Abstract][Full Text] [Related]
25. Genomic in situ hybridization in plants with small genomes is feasible and elucidates the chromosomal parentage in interspecific Arabidopsis hybrids. Ali HB; Lysak MA; Schubert I Genome; 2004 Oct; 47(5):954-60. PubMed ID: 15499409 [TBL] [Abstract][Full Text] [Related]
26. Satellite DNA from Xenopus laevis: comparative analysis of 745 and 1037 base pair Hind III tandem repeats. Meyerhof W; Tappeser B; Korge E; Knöchel W Nucleic Acids Res; 1983 Oct; 11(20):6997-7009. PubMed ID: 6314270 [TBL] [Abstract][Full Text] [Related]
27. Cloning and characterization of a highly conserved satellite DNA sequence specific for the phytoparasitic nematode Bursaphelenchus xylophilus. Tarès S; Lemontey JM; de Guiran G; Abad P Gene; 1993 Jul; 129(2):269-73. PubMed ID: 7686872 [TBL] [Abstract][Full Text] [Related]
28. Small RNAs serve as a genetic buffer against genomic shock in Arabidopsis interspecific hybrids and allopolyploids. Ha M; Lu J; Tian L; Ramachandran V; Kasschau KD; Chapman EJ; Carrington JC; Chen X; Wang XJ; Chen ZJ Proc Natl Acad Sci U S A; 2009 Oct; 106(42):17835-40. PubMed ID: 19805056 [TBL] [Abstract][Full Text] [Related]
29. Concerted evolution of primate alpha satellite DNA. Evidence for an ancestral sequence shared by gorilla and human X chromosome alpha satellite. Durfy SJ; Willard HF J Mol Biol; 1990 Dec; 216(3):555-66. PubMed ID: 2258932 [TBL] [Abstract][Full Text] [Related]
30. Genetic definition and sequence analysis of Arabidopsis centromeres. Copenhaver GP; Nickel K; Kuromori T; Benito MI; Kaul S; Lin X; Bevan M; Murphy G; Harris B; Parnell LD; McCombie WR; Martienssen RA; Marra M; Preuss D Science; 1999 Dec; 286(5449):2468-74. PubMed ID: 10617454 [TBL] [Abstract][Full Text] [Related]
31. A family of dispersed repeats in the genome of Vicia faba: structure, chromosomal organization, redundancy modulation, and evolution. Frediani M; Gelati MT; Maggini F; Galasso I; Minelli S; Ceccarelli M; Cionini PG Chromosoma; 1999 Sep; 108(5):317-24. PubMed ID: 10525968 [TBL] [Abstract][Full Text] [Related]
32. Novel repeated DNA sequences in safflower (Carthamus tinctorius L.) (Asteraceae): cloning, sequencing, and physical mapping by fluorescence in situ hybridization. Raina SN; Sharma S; Sasakuma T; Kishii M; Vaishnavi S J Hered; 2005; 96(4):424-9. PubMed ID: 15731214 [TBL] [Abstract][Full Text] [Related]
33. Two extended arrays of a satellite DNA sequence at the centromere and at the short-arm telomere of Chinese hamster chromosome 5. Faravelli M; Moralli D; Bertoni L; Attolini C; Chernova O; Raimondi E; Giulotto E Cytogenet Cell Genet; 1998; 83(3-4):281-6. PubMed ID: 10072604 [TBL] [Abstract][Full Text] [Related]
34. Cloning, characterization and chromosomal location of a satellite DNA from the Pacific oyster, Crassostrea gigas. Clabby C; Goswami U; Flavin F; Wilkins NP; Houghton JA; Powell R Gene; 1996 Feb; 168(2):205-9. PubMed ID: 8654945 [TBL] [Abstract][Full Text] [Related]
35. Chromosome localization and orientation of the simple sequence repeat of human satellite I DNA. Meyne J; Goodwin EH; Moyzis RK Chromosoma; 1994 Apr; 103(2):99-103. PubMed ID: 8055716 [TBL] [Abstract][Full Text] [Related]
36. Divergence of satellite DNA and interspersion of dispersed repeats in the genome of the wild beet Beta procumbens. Dechyeva D; Gindullis F; Schmidt T Chromosome Res; 2003; 11(1):3-21. PubMed ID: 12675302 [TBL] [Abstract][Full Text] [Related]
37. A subtelomeric satellite DNA family isolated from the genome of the dioecious plant Silene latifolia. Garrido-Ramos MA; de la Herrán R; Ruiz Rejón M; Ruiz Rejón C Genome; 1999 Jun; 42(3):442-6. PubMed ID: 10382291 [TBL] [Abstract][Full Text] [Related]
38. Differential genome evolution and speciation of Coix lacryma-jobi L. and Coix aquatica Roxb. hybrid guangxi revealed by repetitive sequence analysis and fine karyotyping. Cai Z; Liu H; He Q; Pu M; Chen J; Lai J; Li X; Jin W BMC Genomics; 2014 Nov; 15(1):1025. PubMed ID: 25425126 [TBL] [Abstract][Full Text] [Related]
39. Evolutionary dynamics of satellite DNA repeats from Phaseolus beans. Ribeiro T; Dos Santos KG; Richard MM; Sévignac M; Thareau V; Geffroy V; Pedrosa-Harand A Protoplasma; 2017 Mar; 254(2):791-801. PubMed ID: 27335007 [TBL] [Abstract][Full Text] [Related]