These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
938 related articles for article (PubMed ID: 776770)
1. Molecular aspects of electrical excitation in lipid bilayers and cell membranes. Mueller P Horiz Biochem Biophys; 1976; 2():230-84. PubMed ID: 776770 [TBL] [Abstract][Full Text] [Related]
2. Membrane excitation through voltage-induced aggregation of channel precursors. Mueller P Ann N Y Acad Sci; 1975 Dec; 264():247-64. PubMed ID: 1062954 [TBL] [Abstract][Full Text] [Related]
7. Molecular dynamics of alamethicin transmembrane channels from open-channel current noise analysis. Mak DO; Webb WW Biophys J; 1995 Dec; 69(6):2337-49. PubMed ID: 8599640 [TBL] [Abstract][Full Text] [Related]
8. Exploring voltage-dependent ion channels in silico by hysteretic conductance. Andersson T Math Biosci; 2010 Jul; 226(1):16-27. PubMed ID: 20303991 [TBL] [Abstract][Full Text] [Related]
9. Voltage-dependent channel formation by rods of helical polypeptides. Menestrina G; Voges KP; Jung G; Boheim G J Membr Biol; 1986; 93(2):111-32. PubMed ID: 2433450 [TBL] [Abstract][Full Text] [Related]
10. Kinetic characteristics of the excitability-inducing material channel in oxidized cholesterol and brain lipid bilayer membranes. Alvarez O; Latorre R; Verdugo P J Gen Physiol; 1975 Apr; 65(4):421-39. PubMed ID: 1151321 [TBL] [Abstract][Full Text] [Related]
11. Asymmetric electrostatic effects on the gating of rat brain sodium channels in planar lipid membranes. Cukierman S Biophys J; 1991 Oct; 60(4):845-55. PubMed ID: 1660316 [TBL] [Abstract][Full Text] [Related]
12. Voltage-dependent block by saxitoxin of sodium channels incorporated into planar lipid bilayers. French RJ; Worley JF; Krueger BK Biophys J; 1984 Jan; 45(1):301-10. PubMed ID: 6324910 [TBL] [Abstract][Full Text] [Related]
13. [Mathematical model of electrogenic transport through biomembranes via oligomeric channels capable of conformational transitions]. Markevich NI Biofizika; 1979; 24(6):1064-9. PubMed ID: 508821 [TBL] [Abstract][Full Text] [Related]
14. A three state model for alamethicin conductance in bilayer membranes. Bruner LJ J Theor Biol; 1985 Nov; 117(2):265-76. PubMed ID: 4079449 [TBL] [Abstract][Full Text] [Related]
15. Inactivation of monazomycin-induced voltage-dependent conductance in thin lipid membranes. II. Inactivation produced by monazomycin transport through the membrane. Heyer RJ; Muller RU; Finkelstein A J Gen Physiol; 1976 Jun; 67(6):731-48. PubMed ID: 932673 [TBL] [Abstract][Full Text] [Related]
16. Dihydropyridine-sensitive skeletal muscle Ca channels in polarized planar bilayers. 1. Kinetics and voltage dependence of gating. Ma J; Mundiña-Weilenmann C; Hosey MM; Ríos E Biophys J; 1991 Oct; 60(4):890-901. PubMed ID: 1660319 [TBL] [Abstract][Full Text] [Related]
17. Unified modeling of conductance kinetics for low- and high-conductance potassium ion channels. Tolokh IS; Goldman S; Gray CG Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 1):011902. PubMed ID: 16907122 [TBL] [Abstract][Full Text] [Related]
18. Inactivation kinetics and steady-state current noise in the anomalous rectifier of tunicate egg cell membranes. Ohmori H J Physiol; 1978 Aug; 281():77-99. PubMed ID: 568176 [TBL] [Abstract][Full Text] [Related]
19. The kinetics of ion movements in the gramicidin channel. Urban BW; Hladky SB; Haydon DA Fed Proc; 1978 Oct; 37(12):2628-32. PubMed ID: 81148 [TBL] [Abstract][Full Text] [Related]
20. Kinetics of the opening and closing of individual excitability-inducing material channels in a lipid bilayer. Ehrenstein G; Blumenthal R; Latorre R; Lecar H J Gen Physiol; 1974 Jun; 63(6):707-21. PubMed ID: 4829526 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]