BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 7767786)

  • 1. Activity of cytosolic and mitochondrial enzymes participating in nutrient catabolism of normal and tumoral islet cells.
    Rasschaert J; Malaisse WJ
    Int J Biochem Cell Biol; 1995 Feb; 27(2):195-200. PubMed ID: 7767786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relevance of lactate dehydrogenase activity to the control of oxidative glycolysis in pancreatic islet B-cells.
    Jijakli H; Rasschaert J; Nadi AB; Leclercq-Meyer V; Sener A; Malaisse WJ
    Arch Biochem Biophys; 1996 Mar; 327(2):260-4. PubMed ID: 8619612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ontogeny of FAD-linked glycerophosphate dehydrogenase in rat pancreatic islets.
    Rasschaert J; Malaisse WJ; Tanigawa K
    Reprod Fertil Dev; 1996; 8(3):443-8. PubMed ID: 8795109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Is type 2 diabetes due to a deficiency of FAD-linked glycerophosphate dehydrogenase in pancreatic islets?
    Malaisse WJ
    Acta Diabetol; 1993; 30(1):1-5. PubMed ID: 8329724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deficient activity of FAD-linked glycerophosphate dehydrogenase in islets of GK rats.
    Ostenson CG; Abdel-Halim SM; Rasschaert J; Malaisse-Lagae F; Meuris S; Sener A; Efendic S; Malaisse WJ
    Diabetologia; 1993 Aug; 36(8):722-6. PubMed ID: 8405739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hexose metabolism in pancreatic islets: regulation of mitochondrial hexokinase binding.
    Malaisse-Lagae F; Malaisse WJ
    Biochem Med Metab Biol; 1988 Feb; 39(1):80-9. PubMed ID: 3281698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymic activities in two populations of purified rat islet beta-cells.
    Sener A; Mercan D; Malaisse WJ
    Int J Mol Med; 2001 Sep; 8(3):285-9. PubMed ID: 11494057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low lactate dehydrogenase and high mitochondrial glycerol phosphate dehydrogenase in pancreatic beta-cells. Potential role in nutrient sensing.
    Sekine N; Cirulli V; Regazzi R; Brown LJ; Gine E; Tamarit-Rodriguez J; Girotti M; Marie S; MacDonald MJ; Wollheim CB
    J Biol Chem; 1994 Feb; 269(7):4895-902. PubMed ID: 8106462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pancreatic islet mitochondrial glycerophosphate dehydrogenase deficiency in two animal models of non-insulin-dependent diabetes mellitus.
    Fabregat ME; Novials A; Giroix MH; Sener A; Gomis R; Malaisse WJ
    Biochem Biophys Res Commun; 1996 Mar; 220(3):1020-3. PubMed ID: 8607784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Streptozotocin-induced FAD-glycerophosphate dehydrogenase suppression in pancreatic islets. Relationship with the severity and duration of hyperglycaemia and resistance to insulin or riboflavin treatment.
    Rasschaert J; Malaisse WJ
    Acta Diabetol; 1993; 30(1):6-10. PubMed ID: 8329733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-insulin-dependent diabetes mellitus and islet B-cell mitochondrial glycerophosphate dehydrogenase deficiency.
    Malaisse WJ
    Diabet Med; 1995 Jun; 12(6):479-81. PubMed ID: 7648819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maturation of fetal rat islet cells in vitro during tissue culture is associated with increased mitochondrial function.
    Sener A; Welsh M; Welsh N; Hellerström C; Malaisse WJ
    Diabetes Res; 1990 Apr; 13(4):157-61. PubMed ID: 2134206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defective catabolism of D-glucose and L-glutamine in mouse pancreatic islets maintained in culture after streptozotocin exposure.
    Eizirik DL; Sandler S; Sener A; Malaisse WJ
    Endocrinology; 1988 Aug; 123(2):1001-7. PubMed ID: 2969323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long term in vitro effects of streptozotocin, interleukin-1, and high glucose concentration on the activity of mitochondrial dehydrogenases and the secretion of insulin in pancreatic islets.
    Rasschaert J; Eizirik DL; Malaisse WJ
    Endocrinology; 1992 Jun; 130(6):3522-8. PubMed ID: 1534541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. D-glucose metabolism in BRIN-BD11 islet cells.
    Rasschaert J; Flatt PR; Barnett CR; McClenaghan NH; Malaisse WJ
    Biochem Mol Med; 1996 Apr; 57(2):97-105. PubMed ID: 8733887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FAD-linked glycerophosphate dehydrogenase deficiency in pancreatic islets of mice with hereditary diabetes.
    Sener A; Herberg L; Malaisse WJ
    FEBS Lett; 1993 Feb; 316(3):224-7. PubMed ID: 8422947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential regulation of glucokinase activity in pancreatic islets and liver of the rat.
    Bedoya FJ; Matschinsky FM; Shimizu T; O'Neil JJ; Appel MC
    J Biol Chem; 1986 Aug; 261(23):10760-4. PubMed ID: 3015939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impaired activity of rat pancreatic islet mitochondrial glycerophosphate dehydrogenase in protein malnutrition.
    Rasschaert J; Reusens B; Dahri S; Sener A; Remacle C; Hoet JJ; Malaisse WJ
    Endocrinology; 1995 Jun; 136(6):2631-4. PubMed ID: 7750486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Porin proteins in mitochondria from rat pancreatic islet cells and white adipocytes: identification and regulation of hexokinase binding by the sulfonylurea glimepiride.
    Müller G; Korndörfer A; Kornak U; Malaisse WJ
    Arch Biochem Biophys; 1994 Jan; 308(1):8-23. PubMed ID: 8311478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Normalization by insulin treatment of low mitochondrial glycerol phosphate dehydrogenase and pyruvate carboxylase in pancreatic islets of the GK rat.
    MacDonald MJ; Efendić S; Ostenson CG
    Diabetes; 1996 Jul; 45(7):886-90. PubMed ID: 8666138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.