These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 7767867)

  • 1. Paradoxic bradycardia (vasodepressor reaction) induced by inferior vena cava occlusion: the role of alpha- and beta-adrenergic receptors and their interaction.
    Waxman MB; Asta JA; Cameron DA
    Can J Physiol Pharmacol; 1994 Nov; 72(11):1277-87. PubMed ID: 7767867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of adenosine receptors in the paradoxic bradycardia response of rats to inferior vena cava occlusion during an infusion of isoproterenol.
    Waxman MB; Asta JA
    Circulation; 1998 Sep; 98(12):1228-35. PubMed ID: 9743515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vasodepressor reaction induced by inferior vena cava occlusion and isoproterenol in the rat. Role of beta 1- and beta 2-adrenergic receptors.
    Waxman MB; Asta JA; Cameron DA
    Circulation; 1994 May; 89(5):2401-11. PubMed ID: 7910121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Verapamil blockade of the paradoxic bradycardia in rats induced by inferior vena cava occlusion during the administration of isoproterenol or calcium: the role of Ca2+.
    Waxman MB; Asta JA
    Can J Physiol Pharmacol; 1996 Oct; 74(10):1132-40. PubMed ID: 9022833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induction of paradoxic bradycardia in rats by inferior vena cava occlusion during the administration of isoproterenol: the essential role of augmented sympathetic tone.
    Waxman MB; Asta JA
    J Cardiovasc Electrophysiol; 1997 Apr; 8(4):405-14. PubMed ID: 9106426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vasodepressor reaction induced by inferior vena caval occlusion and isoproterenol.
    Waxman MB; Asta JA; Cameron DA; Endrenyi L
    Can J Physiol Pharmacol; 1992 Jun; 70(6):872-81. PubMed ID: 1423031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Localization of the reflex pathway responsible for the vasodepressor reaction induced by inferior vena caval occlusion and isoproterenol.
    Waxman MB; Asta JA; Cameron DA
    Can J Physiol Pharmacol; 1992 Jun; 70(6):882-9. PubMed ID: 1423032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adrenergic receptors in the nucleus accumbens shell differentially modulate dopamine and acetylcholine receptor-mediated turning behaviour.
    Ikeda H; Moribe S; Sato M; Kotani A; Koshikawa N; Cools AR
    Eur J Pharmacol; 2007 Jan; 554(2-3):175-82. PubMed ID: 17113067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alpha-adrenergic regulation of secretion by tracheal glands.
    Culp DJ; McBride RK; Graham LA; Marin MG
    Am J Physiol; 1990 Oct; 259(4 Pt 1):L198-205. PubMed ID: 2171353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Augmented blood pressure variability following continuous infusion of noradrenaline in rats.
    Jiang D; Kawagoe Y; Asada Y; Kitamura K; Kato J
    J Hypertens; 2020 Feb; 38(2):314-321. PubMed ID: 31503135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catecholamines stimulate testicular testosterone release of the immature golden hamster via interaction with alpha- and beta-adrenergic receptors.
    Mayerhofer A; Steger RW; Gow G; Bartke A
    Acta Endocrinol (Copenh); 1992 Dec; 127(6):526-30. PubMed ID: 1337237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple adrenergic receptor subtypes controlling cyclic AMP formation: comparison of brain slices and primary neuronal and glial cultures.
    Atkinson BN; Minneman KP
    J Neurochem; 1991 Feb; 56(2):587-95. PubMed ID: 1671087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of adrenergic agents on alpha-amylase release and adenosine 3',5'-monophosphate accumulation in rat parotid tissue slices.
    Butcher FR; Goldman JA; Nemerovski
    Biochim Biophys Acta; 1975 May; 392(1):82-94. PubMed ID: 164957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of adrenergic receptors in the regulation of gastric motility in the rat.
    Gáti T; Gelencsér F; Hideg J
    Z Exp Chir; 1975; 8(3):179-84. PubMed ID: 44929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of alpha- and beta-adrenoceptor responses by elevations in vascular tone in pulmonary circulation.
    Hyman AL; Kadowitz PJ
    Am J Physiol; 1986 Jun; 250(6 Pt 2):H1109-16. PubMed ID: 2872820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stimulatory effect of beta-adrenergic agonists on ileal L cell secretion and modulation by alpha-adrenergic activation.
    Claustre J; Brechet S; Plaisancie P; Chayvialle JA; Cuber JC
    J Endocrinol; 1999 Aug; 162(2):271-8. PubMed ID: 10425466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of selective adrenergic agonists and antagonists on gastric tone in the rat.
    Bojö L; Nellgård P; Cassuto J
    Acta Physiol Scand; 1991 Aug; 142(4):517-22. PubMed ID: 1683093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catecholamine effects on blood pressure and heart rate in the American bullfrog, Rana catesbeiana.
    Herman CA; Sandoval EJ
    Gen Comp Endocrinol; 1983 Oct; 52(1):142-8. PubMed ID: 6605276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alpha- and beta-adrenergic mechanisms mediate blood pressure control by norepinephrine and angiotensin in ducks.
    Butler DG; Wilson JX; Graves LE
    Gen Comp Endocrinol; 1986 Feb; 61(2):323-9. PubMed ID: 3007271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimulatory and inhibitory effects of catecholamines on DNA synthesis in primary rat hepatocyte cultures: role of alpha 1- and beta-adrenergic mechanisms.
    Refsnes M; Thoresen GH; Sandnes D; Dajani OF; Dajani L; Christoffersen T
    J Cell Physiol; 1992 Apr; 151(1):164-71. PubMed ID: 1313818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.