These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 7768111)

  • 1. ATPase activities of rabbit and bovine lens epithelial microsomes: a continuous fluorimetric assay study.
    Zeng J; Borchman D; Paterson CA
    Curr Eye Res; 1995 Feb; 14(2):87-93. PubMed ID: 7768111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global ischemia-induced inhibition of the coupling ratio of calcium uptake and ATP hydrolysis by rat whole brain microsomal Mg(2+)/Ca(2+) ATPase.
    Parsons JT; Churn SB; DeLorenzo RJ
    Brain Res; 1999 Jul; 834(1-2):32-41. PubMed ID: 10407091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regional distribution of Na,K-ATPase activity in porcine lens epithelium.
    Tamiya S; Dean WL; Paterson CA; Delamere NA
    Invest Ophthalmol Vis Sci; 2003 Oct; 44(10):4395-9. PubMed ID: 14507885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thapsigargin discriminates strongly between Ca(2+)-ATPase phosphorylated intermediates with different subcellular distributions in bovine adrenal chromaffin cells.
    Caspersen C; Treiman M
    FEBS Lett; 1995 Dec; 377(1):31-6. PubMed ID: 8543012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ca-ATPase activity in the rabbit and bovine lens.
    Borchman D; Delamere NA; Paterson CA
    Invest Ophthalmol Vis Sci; 1988 Jun; 29(6):982-7. PubMed ID: 2836334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purine nucleoside phosphorylase from bovine lens: purification and properties.
    Barsacchi D; Cappiello M; Tozzi MG; Del Corso A; Peccatori M; Camici M; Ipata PL; Mura U
    Biochim Biophys Acta; 1992 Nov; 1160(2):163-70. PubMed ID: 1445943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium regulation in tissue-cultured human and bovine lens epithelial cells.
    Duncan G; Webb SF; Dawson AP; Bootman MD; Elliott AJ
    Invest Ophthalmol Vis Sci; 1993 Sep; 34(10):2835-42. PubMed ID: 8360017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective inhibition of membrane ATPases by hydrogen peroxide in the lens of the eye.
    Borchman D; Paterson C; Delamere N
    Basic Life Sci; 1988; 49():1029-33. PubMed ID: 2854973
    [No Abstract]   [Full Text] [Related]  

  • 9. Effect of thiol reagents on Ca-ATPase in rabbit lens epithelium.
    Hightower KR; McCready J
    Curr Eye Res; 1991 Apr; 10(4):299-303. PubMed ID: 1829995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of thapsigargin on Na,K-ATPase activity in cultured nonpigmented ciliary epithelial cells.
    Mito T; Kuwahara S; Delamere NA
    Curr Eye Res; 1995 Aug; 14(8):651-7. PubMed ID: 8529400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calf spleen purine nucleoside phosphorylase: complex kinetic mechanism, hydrolysis of 7-methylguanosine, and oligomeric state in solution.
    Bzowska A
    Biochim Biophys Acta; 2002 Apr; 1596(2):293-317. PubMed ID: 12007610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of Ca2(+)-ATPases in regulation of cellular Ca2+ signalling, as studied with the selective microsomal Ca2(+)-ATPase inhibitor, thapsigargin.
    Thastrup O
    Agents Actions; 1990 Jan; 29(1-2):8-15. PubMed ID: 2139301
    [No Abstract]   [Full Text] [Related]  

  • 13. Characterisation of ATP binding inhibition to the sarcoplasmic reticulum Ca(2+)-ATPase by thapsigargin.
    DeJesus F; Girardet JL; Dupont Y
    FEBS Lett; 1993 Oct; 332(3):229-32. PubMed ID: 8405462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of Escherichia coli purine nucleoside phosphorylase (PNP) with the cationic and zwitterionic forms of the fluorescent substrate N(7)-methylguanosine.
    Stoychev G; Kierdaszuk B; Shugar D
    Biochim Biophys Acta; 2001 Jan; 1544(1-2):74-88. PubMed ID: 11341918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thapsigargin-sensitive Ca(2+)-ATPases account for Ca2+ uptake to inositol 1,4,5-trisphosphate-sensitive and caffeine-sensitive Ca2+ stores in adrenal chromaffin cells.
    Poulsen JC; Caspersen C; Mathiasen D; East JM; Tunwell RE; Lai FA; Maeda N; Mikoshiba K; Treiman M
    Biochem J; 1995 May; 307 ( Pt 3)(Pt 3):749-58. PubMed ID: 7741706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation of chromaffin cell thapsigargin-sensitive Ca2+ store in light microsomes from bovine adrenal medulla.
    Mathiasen D; Røssum LM; Robinson IM; Burgoyne RD; East JM; Møller M; Rasmussen HN; Treiman M
    Int J Biochem; 1993 May; 25(5):641-52. PubMed ID: 8349007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium oscillations in parotid acinar cells induced by microsomal Ca(2+)-ATPase inhibition.
    Foskett JK; Wong D
    Am J Physiol; 1992 Mar; 262(3 Pt 1):C656-63. PubMed ID: 1532294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A continuous fluorimetric assay for ATPase activity.
    Banik U; Roy S
    Biochem J; 1990 Mar; 266(2):611-4. PubMed ID: 2138458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium transport in the lens.
    Hightower KR; Leverenz V; Reddy VN
    Invest Ophthalmol Vis Sci; 1980 Sep; 19(9):1059-66. PubMed ID: 6447674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of action of Ca(2+)-ATPase inhibitors.
    Wictome MP; Lee AG; East JM
    Biochem Soc Trans; 1992 Aug; 20(3):249S. PubMed ID: 1426543
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.