These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 7768149)

  • 1. Antibacterial peptides in insect vectors of tropical parasitic disease.
    Ham PJ; Albuquerque C; Smithies B; Chalk R; Klager S; Hagen H
    Ciba Found Symp; 1994; 186():140-51; discussion 151-9. PubMed ID: 7768149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insect immunity: isolation of three novel inducible antibacterial defensins from the vector mosquito, Aedes aegypti.
    Lowenberger C; Bulet P; Charlet M; Hetru C; Hodgeman B; Christensen BM; Hoffmann JA
    Insect Biochem Mol Biol; 1995 Jul; 25(7):867-73. PubMed ID: 7633471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Approaches to vector control: new and trusted. 1. Humoral immune responses in blackfly and mosquito vectors of filariae.
    Ham PJ; Albuquerque C; Baxter AJ; Chalk R; Hagen HE
    Trans R Soc Trop Med Hyg; 1994; 88(2):132-5. PubMed ID: 7913559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Full sequence and characterization of two insect defensins: immune peptides from the mosquito Aedes aegypti.
    Chalk R; Albuquerque CM; Ham PJ; Townson H
    Proc Biol Sci; 1995 Aug; 261(1361):217-21. PubMed ID: 7568275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification of an insect defensin from the mosquito, Aedes aegypti.
    Chalk R; Townson H; Natori S; Desmond H; Ham PJ
    Insect Biochem Mol Biol; 1994 Apr; 24(4):403-10. PubMed ID: 8025559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immunity to eukaryotic parasites in vector insects.
    Richman A; Kafatos FC
    Curr Opin Immunol; 1996 Feb; 8(1):14-9. PubMed ID: 8729441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Innate immune response of Aedes aegypti.
    Lowenberger C
    Insect Biochem Mol Biol; 2001 Mar; 31(3):219-29. PubMed ID: 11167091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aedes (Stegomyia) aegypti in the continental United States: a vector at the cool margin of its geographic range.
    Eisen L; Moore CG
    J Med Entomol; 2013 May; 50(3):467-78. PubMed ID: 23802440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-silico homology modeling of three isoforms of insect defensins from the dengue vector mosquito, Aedes aegypti (Linn., 1762).
    Dhananjeyan KJ; Sivaperumal R; Paramasivan R; Thenmozhi V; Tyagi BK
    J Mol Model; 2009 May; 15(5):507-14. PubMed ID: 19085024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human IgG Antibody Response to Aedes Nterm-34kDa Salivary Peptide, an Epidemiological Tool to Assess Vector Control in Chikungunya and Dengue Transmission Area.
    Elanga Ndille E; Doucoure S; Poinsignon A; Mouchet F; Cornelie S; D'Ortenzio E; DeHecq JS; Remoue F
    PLoS Negl Trop Dis; 2016 Dec; 10(12):e0005109. PubMed ID: 27906987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insect defensins: inducible antibacterial peptides.
    Hoffmann JA; Hetru C
    Immunol Today; 1992 Oct; 13(10):411-5. PubMed ID: 1418378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aedes aegypti: induced antibacterial proteins reduce the establishment and development of Brugia malayi.
    Lowenberger CA; Ferdig MT; Bulet P; Khalili S; Hoffmann JA; Christensen BM
    Exp Parasitol; 1996 Jul; 83(2):191-201. PubMed ID: 8682188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Impact of changes in the environment on vector-transmitted diseases].
    Mouchet J; Carnevale P
    Sante; 1997; 7(4):263-9. PubMed ID: 9410453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mosquito-Plasmodium interactions in response to immune activation of the vector.
    Lowenberger CA; Kamal S; Chiles J; Paskewitz S; Bulet P; Hoffmann JA; Christensen BM
    Exp Parasitol; 1999 Jan; 91(1):59-69. PubMed ID: 9920043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmodium activates the innate immune response of Anopheles gambiae mosquitoes.
    Richman AM; Dimopoulos G; Seeley D; Kafatos FC
    EMBO J; 1997 Oct; 16(20):6114-9. PubMed ID: 9321391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aedes aegypti anti-salivary gland antibody concentration and dengue virus exposure history in healthy individuals living in an endemic area in Colombia.
    Londoño-Rentería B; Cárdenas JC; Giovanni JE; Cárdenas L; Villamizar P; Rolón J; Chisenhall DM; Christofferson RC; Carvajal DJ; Pérez OG; Wesson DM; Mores CN
    Biomedica; 2015; 35(4):572-81. PubMed ID: 26844447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induction of the prophenoloxidase-activating system of Simulium (Diptera: Simuliidae) following Onchocerca (Nematoda: Filarioidea) infection.
    Hagen HE; Grunewald J; Ham PJ
    Parasitology; 1994 Dec; 109 ( Pt 5)():649-55. PubMed ID: 7831100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Larvicidal and Adulticidal Activity of Chroman and Chromene Analogues against Susceptible and Permethrin-Resistant Mosquito Strains.
    Meepagala KM; Estep AS; Becnel JJ
    J Agric Food Chem; 2016 Jun; 64(24):4914-20. PubMed ID: 27249182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional implications of the peptidoglycan recognition proteins in the immunity of the yellow fever mosquito, Aedes aegypti.
    Wang S; Beerntsen BT
    Insect Mol Biol; 2015 Jun; 24(3):293-310. PubMed ID: 25588548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human C5a Protein Participates in the Mosquito Immune Response Against Dengue Virus.
    Londono-Renteria B; Grippin C; Cardenas JC; Troupin A; Colpitts TM
    J Med Entomol; 2016 May; 53(3):505-512. PubMed ID: 26843451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.