BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 7768448)

  • 1. Molecular evolution of the Ac/Ds transposable-element family in pearl millet and other grasses.
    Huttley GA; MacRae AF; Clegg MT
    Genetics; 1995 Mar; 139(3):1411-9. PubMed ID: 7768448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of Ac and Dsl elements in select grasses (Poaceae).
    MacRae AF; Clegg MT
    Genetica; 1992; 86(1-3):55-66. PubMed ID: 1334918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular evolutionary characterization of an Activator (Ac)-like transposable element sequence from pearl millet (Pennisetum glaucum) (Poaceae).
    MacRae AF; Huttley GA; Clegg MT
    Genetica; 1994; 92(2):77-89. PubMed ID: 7958939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Presence of an Activator (Ac)-like sequence in Pennisetum glaucum (pearl millet).
    MacRae AF; Learn GH; Karjala M; Clegg MT
    Plant Mol Biol; 1990 Jul; 15(1):177-9. PubMed ID: 1966487
    [No Abstract]   [Full Text] [Related]  

  • 5. Cereal domestication and evolution of branching: evidence for soft selection in the Tb1 orthologue of pearl millet (Pennisetum glaucum [L.] R. Br.).
    Remigereau MS; Lakis G; Rekima S; Leveugle M; Fontaine MC; Langin T; Sarr A; Robert T
    PLoS One; 2011; 6(7):e22404. PubMed ID: 21799845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuareg, a novel miniature-inverted repeat family of pearl millet (Pennisetum glaucum) related to the PIF superfamily of maize.
    Remigereau MS; Robin O; Siljak-Yakovlev S; Sarr A; Robert T; Langin T
    Genetica; 2006; 128(1-3):205-16. PubMed ID: 17028951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mobile inverted-repeat elements of the Tourist family are associated with the genes of many cereal grasses.
    Bureau TE; Wessler SR
    Proc Natl Acad Sci U S A; 1994 Feb; 91(4):1411-5. PubMed ID: 8108422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A maize cryptic Ac-homologous sequence derived from an Activator transposable element does not transpose.
    Leu JY; Sun YH; Lai YK; Chen J
    Mol Gen Genet; 1992 Jun; 233(3):411-8. PubMed ID: 1320187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phylogeny and origin of pearl millet (Pennisetum glaucum [L.] R. Br) as revealed by microsatellite loci.
    Oumar I; Mariac C; Pham JL; Vigouroux Y
    Theor Appl Genet; 2008 Aug; 117(4):489-97. PubMed ID: 18504539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A high-copy-number CACTA family transposon in temperate grasses and cereals.
    Langdon T; Jenkins G; Hasterok R; Jones RN; King IP
    Genetics; 2003 Mar; 163(3):1097-108. PubMed ID: 12663547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preferential recruitment of the maternal centromere-specific histone H3 (CENH3) in oat (Avena sativa L.) × pearl millet (Pennisetum glaucum L.) hybrid embryos.
    Ishii T; Sunamura N; Matsumoto A; Eltayeb AE; Tsujimoto H
    Chromosome Res; 2015 Dec; 23(4):709-18. PubMed ID: 26134441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleotide polymorphism in the Adh1 locus of pearl millet (Pennisetum glaucum) (Poaceae).
    Gaut BS; Clegg MT
    Genetics; 1993 Dec; 135(4):1091-7. PubMed ID: 7905843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular evolution of alcohol dehydrogenase 1 in members of the grass family.
    Gaut BS; Clegg MT
    Proc Natl Acad Sci U S A; 1991 Mar; 88(6):2060-4. PubMed ID: 2006143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antinutritional factors in pearl millet grains: Phytate and goitrogens content variability and molecular characterization of genes involved in their pathways.
    Boncompagni E; Orozco-Arroyo G; Cominelli E; Gangashetty PI; Grando S; Kwaku Zu TT; Daminati MG; Nielsen E; Sparvoli F
    PLoS One; 2018; 13(6):e0198394. PubMed ID: 29856884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The maize transposable element Ac induces recombination between the donor site and an homologous ectopic sequence.
    Shalev G; Levy AA
    Genetics; 1997 Jul; 146(3):1143-51. PubMed ID: 9215915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implications for the cis-requirements for Ds transposition based on the sequence of the wxB4 Ds element.
    Varagona M; Wessler SR
    Mol Gen Genet; 1990 Feb; 220(3):414-8. PubMed ID: 2160051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Abortive gap repair: underlying mechanism for Ds element formation.
    Rubin E; Levy AA
    Mol Cell Biol; 1997 Nov; 17(11):6294-302. PubMed ID: 9343390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomic diversity of Ac-like transposable elements in sphaerococcum mutant forms of common wheat (Triticum aestivum L.) and triticale (X Triticosecale Witt.).
    Bonchev G; Stoilov L; Angelova Z; Georgiev S
    J Appl Genet; 2012 Feb; 53(1):9-17. PubMed ID: 21971991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polymorphism pattern at a miniature inverted-repeat transposable element locus downstream of the domestication gene Teosinte-branched1 in wild and domesticated pearl millet.
    Dussert Y; Remigereau MS; Fontaine MC; Snirc A; Lakis G; Stoeckel S; Langin T; Sarr A; Robert T
    Mol Ecol; 2013 Jan; 22(2):327-40. PubMed ID: 23205613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation of the transposable maize controlling elements Ac and Ds.
    Fedoroff N; Wessler S; Shure M
    Cell; 1983 Nov; 35(1):235-42. PubMed ID: 6313225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.