These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 7768600)
41. The critical role of the linear plasmid lp36 in the infectious cycle of Borrelia burgdorferi. Jewett MW; Lawrence K; Bestor AC; Tilly K; Grimm D; Shaw P; VanRaden M; Gherardini F; Rosa PA Mol Microbiol; 2007 Jun; 64(5):1358-74. PubMed ID: 17542926 [TBL] [Abstract][Full Text] [Related]
42. Complement evasion by the Lyme disease spirochete Borrelia burgdorferi grown in host-derived tissue co-cultures: role of fibronectin in complement-resistance. Güner ES Experientia; 1996 Apr; 52(4):364-72. PubMed ID: 8620942 [TBL] [Abstract][Full Text] [Related]
43. Infectivity of the highly transformable BBE02- lp56- mutant of Borrelia burgdorferi, the Lyme disease spirochete, via ticks. Jacobs MB; Norris SJ; Phillippi-Falkenstein KM; Philipp MT Infect Immun; 2006 Jun; 74(6):3678-81. PubMed ID: 16714602 [TBL] [Abstract][Full Text] [Related]
44. Borrelia burgdorferi sensu lato diversity and its influence on pathogenicity in humans. Baranton G; De Martino SJ Curr Probl Dermatol; 2009; 37():1-17. PubMed ID: 19367094 [TBL] [Abstract][Full Text] [Related]
45. The absence of linear plasmid 25 or 28-1 of Borrelia burgdorferi dramatically alters the kinetics of experimental infection via distinct mechanisms. Labandeira-Rey M; Seshu J; Skare JT Infect Immun; 2003 Aug; 71(8):4608-13. PubMed ID: 12874340 [TBL] [Abstract][Full Text] [Related]
46. Comparative genome analysis: selection pressure on the Borrelia vls cassettes is essential for infectivity. Glöckner G; Schulte-Spechtel U; Schilhabel M; Felder M; Sühnel J; Wilske B; Platzer M BMC Genomics; 2006 Aug; 7():211. PubMed ID: 16914037 [TBL] [Abstract][Full Text] [Related]
47. Borrelia burgdorferi organisms lacking plasmids 25 and 28-1 are internalized by human blood phagocytes at a rate identical to that of the wild-type strain. Al-Robaiy S; Knauer J; Straubinger RK Infect Immun; 2005 Sep; 73(9):5547-53. PubMed ID: 16113271 [TBL] [Abstract][Full Text] [Related]
48. Infectivity of Borrelia burgdorferi correlates with resistance to elimination by phagocytic cells. Georgilis K; Steere AC; Klempner MS J Infect Dis; 1991 Jan; 163(1):150-5. PubMed ID: 1984461 [TBL] [Abstract][Full Text] [Related]
50. Borrelia burgdorferi erpT expression in the arthropod vector and murine host. Fikrig E; Chen M; Barthold SW; Anguita J; Feng W; Telford SR; Flavell RA Mol Microbiol; 1999 Jan; 31(1):281-90. PubMed ID: 9987129 [TBL] [Abstract][Full Text] [Related]
51. Subcutaneous implanted chambers in different mouse strains as an animal model to study genetic stability during infection with Lyme disease Borrelia. Jonsson M; Elmros T; Bergström S Microb Pathog; 1995 Feb; 18(2):109-14. PubMed ID: 7543971 [TBL] [Abstract][Full Text] [Related]
52. Antigenic and genetic heterogeneity of Borrelia burgdorferi populations transmitted by ticks. Ohnishi J; Piesman J; de Silva AM Proc Natl Acad Sci U S A; 2001 Jan; 98(2):670-5. PubMed ID: 11209063 [TBL] [Abstract][Full Text] [Related]
53. Analysis of Borrelia burgdorferi vlsE gene expression and recombination in the tick vector. Indest KJ; Howell JK; Jacobs MB; Scholl-Meeker D; Norris SJ; Philipp MT Infect Immun; 2001 Nov; 69(11):7083-90. PubMed ID: 11598084 [TBL] [Abstract][Full Text] [Related]
54. Changes in antigenic reactivity of Borrelia burgdorferi, the Lyme disease spirochete, during persistent infection in mice. Schwan TG; Karstens RH; Schrumpf ME; Simpson WJ Can J Microbiol; 1991 Jun; 37(6):450-4. PubMed ID: 1913349 [TBL] [Abstract][Full Text] [Related]
55. Investigation of Xiang X; Yang Y; Du J; Lin T; Chen T; Yang XF; Lou Y Front Cell Infect Microbiol; 2017; 7():131. PubMed ID: 28473966 [TBL] [Abstract][Full Text] [Related]
56. Disruption of bbe02 by Insertion of a Luciferase Gene Increases Transformation Efficiency of Borrelia burgdorferi and Allows Live Imaging in Lyme Disease Susceptible C3H Mice. Chan K; Alter L; Barthold SW; Parveen N PLoS One; 2015; 10(6):e0129532. PubMed ID: 26069970 [TBL] [Abstract][Full Text] [Related]
57. Growth of infectious and non-infectious B. burgdorferi at different salt concentrations. Elias A; Bono JL; Tilly K; Rosa P Wien Klin Wochenschr; 1998 Dec; 110(24):863-5. PubMed ID: 10048166 [TBL] [Abstract][Full Text] [Related]
58. Borrelia burgdorferi is clonal: implications for taxonomy and vaccine development. Dykhuizen DE; Polin DS; Dunn JJ; Wilske B; Preac-Mursic V; Dattwyler RJ; Luft BJ Proc Natl Acad Sci U S A; 1993 Nov; 90(21):10163-7. PubMed ID: 8234271 [TBL] [Abstract][Full Text] [Related]
59. A 55-kilodalton antigen encoded by a gene on a Borrelia burgdorferi 49-kilobase plasmid is recognized by antibodies in sera from patients with Lyme disease. Feng S; Das S; Lam T; Flavell RA; Fikrig E Infect Immun; 1995 Sep; 63(9):3459-66. PubMed ID: 7642278 [TBL] [Abstract][Full Text] [Related]