BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 7768805)

  • 1. The posttranslational modification of phosphoglucomutase is regulated by galactose induction and glucose repression in Saccharomyces cerevisiae.
    Fu L; Bounelis P; Dey N; Browne BL; Marchase RB; Bedwell DM
    J Bacteriol; 1995 Jun; 177(11):3087-94. PubMed ID: 7768805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcription of a yeast phosphoglucomutase isozyme gene is galactose inducible and glucose repressible.
    Oh D; Hopper JE
    Mol Cell Biol; 1990 Apr; 10(4):1415-22. PubMed ID: 2138705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphoglucomutase is an in vivo lithium target in yeast.
    Masuda CA; Xavier MA; Mattos KA; Galina A; Montero-Lomeli M
    J Biol Chem; 2001 Oct; 276(41):37794-801. PubMed ID: 11500487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvement of galactose uptake in Saccharomyces cerevisiae through overexpression of phosphoglucomutase: example of transcript analysis as a tool in inverse metabolic engineering.
    Bro C; Knudsen S; Regenberg B; Olsson L; Nielsen J
    Appl Environ Microbiol; 2005 Nov; 71(11):6465-72. PubMed ID: 16269670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Mutation in
    Liu JJ; Zhang GC; Kong II; Yun EJ; Zheng JQ; Kweon DH; Jin YS
    Appl Environ Microbiol; 2018 May; 84(10):. PubMed ID: 29523547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The glycosylation of phosphoglucomutase is modulated by carbon source and heat shock in Saccharomyces cerevisiae.
    Dey NB; Bounelis P; Fritz TA; Bedwell DM; Marchase RB
    J Biol Chem; 1994 Oct; 269(43):27143-8. PubMed ID: 7929458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PGM2 overexpression improves anaerobic galactose fermentation in Saccharomyces cerevisiae.
    Garcia Sanchez R; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Microb Cell Fact; 2010 May; 9():40. PubMed ID: 20507616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trehalose metabolism in Saccharomyces cerevisiae during heat-shock.
    Ribeiro MJ; Silva JT; Panek AD
    Biochim Biophys Acta; 1994 Jul; 1200(2):139-47. PubMed ID: 8031833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of glycolytic enzymes and the Crabtree effect in galactose-limited continuous cultures of Saccharomyces cerevisiae.
    Sierkstra LN; Nouwen NP; Verbakel JM; Verrips CT
    Yeast; 1993 Jul; 9(7):787-95. PubMed ID: 8368013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The glucose-6-phosphate-isomerase reaction is essential for normal glucose repression in Saccharomyces cerevisiae.
    Sierkstra LN; Silljé HH; Verbakel JM; Verrips CT
    Eur J Biochem; 1993 May; 214(1):121-7. PubMed ID: 8508783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased phosphoglucomutase activity suppresses the galactose growth defect associated with elevated levels of Ras signaling in S. cerevisiae.
    Howard SC; Deminoff SJ; Herman PK
    Curr Genet; 2006 Jan; 49(1):1-6. PubMed ID: 16292676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracellular glucose 1-phosphate and glucose 6-phosphate levels modulate Ca2+ homeostasis in Saccharomyces cerevisiae.
    Aiello DP; Fu L; Miseta A; Bedwell DM
    J Biol Chem; 2002 Nov; 277(48):45751-8. PubMed ID: 12351653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A family of hexosephosphate mutases in Saccharomyces cerevisiae.
    Boles E; Liebetrau W; Hofmann M; Zimmermann FK
    Eur J Biochem; 1994 Feb; 220(1):83-96. PubMed ID: 8119301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of phosphoglucomutase activity by lithium alters cellular calcium homeostasis and signaling in Saccharomyces cerevisiae.
    Csutora P; Strassz A; Boldizsár F; Németh P; Sipos K; Aiello DP; Bedwell DM; Miseta A
    Am J Physiol Cell Physiol; 2005 Jul; 289(1):C58-67. PubMed ID: 15703203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loss of the major isoform of phosphoglucomutase results in altered calcium homeostasis in Saccharomyces cerevisiae.
    Fu L; Miseta A; Hunton D; Marchase RB; Bedwell DM
    J Biol Chem; 2000 Feb; 275(8):5431-40. PubMed ID: 10681519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphoglucomutase in Saccharomyces cerevisiae is a cytoplasmic glycoprotein and the acceptor for a Glc-phosphotransferase.
    Marchase RB; Bounelis P; Brumley LM; Dey N; Browne B; Auger D; Fritz TA; Kulesza P; Bedwell DM
    J Biol Chem; 1993 Apr; 268(11):8341-9. PubMed ID: 8385141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of glucose repression in Saccharomyces cerevisiae by pulsing glucose to a galactose-limited continuous culture.
    Sierkstra LN; Nouwen NP; Verbakel JM; Verrips CT
    Yeast; 1992 Dec; 8(12):1077-87. PubMed ID: 1338140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of UDPG-pyrophosphorylase isoforms in Saccharomyces cerevisiae and their roles in trehalose metabolism.
    Dutra MB; Silva JT; Mattos DC; Panek AD
    Biochim Biophys Acta; 1996 Mar; 1289(2):261-9. PubMed ID: 8600983
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Jagadeesan SK; Al-Gafari M; Wang J; Takallou S; Allard D; Hajikarimlou M; Kazmirchuk TDD; Moteshareie H; Said KB; Nokhbeh R; Smith M; Samanfar B; Golshani A
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36675300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The roles of galactitol, galactose-1-phosphate, and phosphoglucomutase in galactose-induced toxicity in Saccharomyces cerevisiae.
    de Jongh WA; Bro C; Ostergaard S; Regenberg B; Olsson L; Nielsen J
    Biotechnol Bioeng; 2008 Oct; 101(2):317-26. PubMed ID: 18421797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.