These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 7768820)

  • 21. Identification and characterization of an ATP binding cassette L-carnitine transporter in Listeria monocytogenes.
    Fraser KR; Harvie D; Coote PJ; O'Byrne CP
    Appl Environ Microbiol; 2000 Nov; 66(11):4696-704. PubMed ID: 11055912
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of osmolytes in adaptation of osmotically stressed and chill-stressed Listeria monocytogenes grown in liquid media and on processed meat surfaces.
    Smith LT
    Appl Environ Microbiol; 1996 Sep; 62(9):3088-93. PubMed ID: 8795194
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of exogenous proline, betaine, and carnitine on growth of Listeria monocytogenes in a minimal medium.
    Beumer RR; Te Giffel MC; Cox LJ; Rombouts FM; Abee T
    Appl Environ Microbiol; 1994 Apr; 60(4):1359-63. PubMed ID: 8017923
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Osmotic and chill activation of glycine betaine porter II in Listeria monocytogenes membrane vesicles.
    Gerhardt PN; Tombras Smith L; Smith GM
    J Bacteriol; 2000 May; 182(9):2544-50. PubMed ID: 10762257
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Properties of carnitine transport in rat kidney cortex slices.
    Huth PJ; Shug AL
    Biochim Biophys Acta; 1980 Nov; 602(3):621-34. PubMed ID: 7437424
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Depletion of proton motive force by nisin in Listeria monocytogenes cells.
    Bruno ME; Kaiser A; Montville TJ
    Appl Environ Microbiol; 1992 Jul; 58(7):2255-9. PubMed ID: 1637163
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Glycine betaine confers enhanced osmotolerance and cryotolerance on Listeria monocytogenes.
    Ko R; Smith LT; Smith GM
    J Bacteriol; 1994 Jan; 176(2):426-31. PubMed ID: 8288538
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanisms of bactericidal action of cinnamaldehyde against Listeria monocytogenes and of eugenol against L. monocytogenes and Lactobacillus sakei.
    Gill AO; Holley RA
    Appl Environ Microbiol; 2004 Oct; 70(10):5750-5. PubMed ID: 15466510
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Response of Bacillus subtilis to high osmolarity: uptake of carnitine, crotonobetaine and γ-butyrobetaine via the ABC transport system OpuC.
    Kappes RM; Bremer E
    Microbiology (Reading); 1998 Jan; 144(1):83-90. PubMed ID: 33757219
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Active transport of L-proline in the protozoan parasite Trypanosoma brucei brucei.
    L'Hostis C; Geindre M; Deshusses J
    Biochem J; 1993 Apr; 291 ( Pt 1)(Pt 1):297-301. PubMed ID: 8471048
    [TBL] [Abstract][Full Text] [Related]  

  • 31. L-carnitine uptake by Escherichia coli.
    Jung H; Jung K; Kleber HP
    J Basic Microbiol; 1990; 30(7):507-14. PubMed ID: 2266491
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Carnitine enhances the growth of Listeria monocytogenes in infant formula at 7 degrees C.
    Sleator RD; Banville N; Hill C
    J Food Prot; 2009 Jun; 72(6):1293-5. PubMed ID: 19610343
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characteristics of L-carnitine transport in cultured human hepatoma HLF cells.
    Yokogawa K; Miya K; Tamai I; Higashi Y; Nomura M; Miyamoto K; Tsuji A
    J Pharm Pharmacol; 1999 Aug; 51(8):935-40. PubMed ID: 10504033
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional characterization of intestinal L-carnitine transport.
    Durán JM; Peral MJ; Calonge ML; Ilundáin AA
    J Membr Biol; 2002 Jan; 185(1):65-74. PubMed ID: 11891565
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A di- and tripeptide transport system can supply Listeria monocytogenes Scott A with amino acids essential for growth.
    Verheul A; Hagting A; Amezaga MR; Booth IR; Rombouts FM; Abee T
    Appl Environ Microbiol; 1995 Jan; 61(1):226-33. PubMed ID: 7887604
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of sigma(B) in adaptation of Listeria monocytogenes to growth at low temperature.
    Becker LA; Evans SN; Hutkins RW; Benson AK
    J Bacteriol; 2000 Dec; 182(24):7083-7. PubMed ID: 11092874
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The sigma factor RpoN (sigma54) is involved in osmotolerance in Listeria monocytogenes.
    Okada Y; Okada N; Makino S; Asakura H; Yamamoto S; Igimi S
    FEMS Microbiol Lett; 2006 Oct; 263(1):54-60. PubMed ID: 16958851
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of the osmoprotectant transporter OpuC from Pseudomonas syringae and demonstration that cystathionine-beta-synthase domains are required for its osmoregulatory function.
    Chen C; Beattie GA
    J Bacteriol; 2007 Oct; 189(19):6901-12. PubMed ID: 17660277
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A possible role of ProP, ProU and CaiT in osmoprotection of Escherichia coli by carnitine.
    Verheul A; Wouters JA; Rombouts FM; Abee T
    J Appl Microbiol; 1998 Dec; 85(6):1036-46. PubMed ID: 9871325
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Listeria monocytogenes Scott A transports glucose by high-affinity and low-affinity glucose transport systems.
    Parker C; Hutkins RW
    Appl Environ Microbiol; 1997 Feb; 63(2):543-6. PubMed ID: 9023935
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.