BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 7768860)

  • 1. A second branched-chain alpha-keto acid dehydrogenase gene cluster (bkdFGH) from Streptomyces avermitilis: its relationship to avermectin biosynthesis and the construction of a bkdF mutant suitable for the production of novel antiparasitic avermectins.
    Denoya CD; Fedechko RW; Hafner EW; McArthur HA; Morgenstern MR; Skinner DD; Stutzman-Engwall K; Wax RG; Wernau WC
    J Bacteriol; 1995 Jun; 177(12):3504-11. PubMed ID: 7768860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The bkdR gene of Streptomyces coelicolor is required for morphogenesis and antibiotic production and encodes a transcriptional regulator of a branched-chain amino acid dehydrogenase complex.
    Sprusansky O; Stirrett K; Skinner D; Denoya C; Westpheling J
    J Bacteriol; 2005 Jan; 187(2):664-71. PubMed ID: 15629937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineered Streptomyces avermitilis host for heterologous expression of biosynthetic gene cluster for secondary metabolites.
    Komatsu M; Komatsu K; Koiwai H; Yamada Y; Kozone I; Izumikawa M; Hashimoto J; Takagi M; Omura S; Shin-ya K; Cane DE; Ikeda H
    ACS Synth Biol; 2013 Jul; 2(7):384-96. PubMed ID: 23654282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of acyl-CoA precursor supply for increased avermectin B1a production by engineering meilingmycin polyketide synthase and key primary metabolic pathway genes.
    Yang M; Hao Y; Liu G; Wen Y
    Microb Biotechnol; 2024 May; 17(5):e14470. PubMed ID: 38683675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a pleiotropic regulator MtrA in Streptomyces avermitilis controlling avermectin production and morphological differentiation.
    Tian J; Li Y; Zhang C; Su J; Lu W
    Microb Cell Fact; 2024 Apr; 23(1):103. PubMed ID: 38584273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative transcriptome analysis of doramectin-producing Streptomyces avermitilis N72 and its mutant strains.
    Pan X; Cai J
    World J Microbiol Biotechnol; 2024 Jun; 40(7):228. PubMed ID: 38822927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of Cluster-Situated Regulator PteF in Filipin Biosynthetic Cluster on Avermectin Biosynthesis in
    Du G; Yang X; Wu Z; Pan M; Dong Z; Zhang Y; Xiang W; Li S
    Biology (Basel); 2024 May; 13(5):. PubMed ID: 38785828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SAV4189, a MarR-Family Regulator in
    Guo J; Zhang X; Lu X; Liu W; Chen Z; Li J; Deng L; Wen Y
    Front Microbiol; 2018; 9():1358. PubMed ID: 30013524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of heavy-ion beam irradiation on avermectin B1a and its analogues production by
    Wang S; Bo Y; Chen J; Zhou X; Li W; Liang J; Dong M
    Eng Life Sci; 2018 Oct; 18(10):711-720. PubMed ID: 32624865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preclinical evaluation of avermectins as novel therapeutic agents for alcohol use disorders.
    Khoja S; Huynh N; Warnecke AMP; Asatryan L; Jakowec MW; Davies DL
    Psychopharmacology (Berl); 2018 Jun; 235(6):1697-1709. PubMed ID: 29500584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combinatorial strategies for production improvement of anti-tuberculosis antibiotics ilamycins E
    Zhu Y; Zheng G; Xin X; Ma J; Ju J; An F
    Bioresour Bioprocess; 2022 Oct; 9(1):111. PubMed ID: 38647771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rationally Improving Doramectin Production in Industrial
    Dang F; Xu Q; Qin Z; Xia H
    Bioengineering (Basel); 2023 Jun; 10(6):. PubMed ID: 37370670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct Monitoring of Membrane Fatty Acid Changes and Effects on the Isoleucine/Valine Pathways in an
    Choi TR; Oh SJ; Hwang JH; Kim HJ; Shin N; Yun J; Lee SH; Bhatia SK; Yang YH
    J Microbiol Biotechnol; 2023 Jun; 33(6):724-735. PubMed ID: 37072678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of functionalized 2,3-diaminopropionates and their potential for directed monobactam biosynthesis.
    Lichstrahl MS; Kahlert L; Li R; Zandi TA; Yang J; Townsend CA
    Chem Sci; 2023 Apr; 14(14):3923-3931. PubMed ID: 37035696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Origin of the 3-methylglutaryl moiety in caprazamycin biosynthesis.
    Bär D; Konetschny B; Kulik A; Xu H; Paccagnella D; Beller P; Ziemert N; Dickschat JS; Gust B
    Microb Cell Fact; 2022 Nov; 21(1):232. PubMed ID: 36335365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Depletion of microbiome-derived molecules in the host using
    Guo CJ; Allen BM; Hiam KJ; Dodd D; Van Treuren W; Higginbottom S; Nagashima K; Fischer CR; Sonnenburg JL; Spitzer MH; Fischbach MA
    Science; 2019 Dec; 366(6471):. PubMed ID: 31831639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The genome sequence of Streptomyces rochei 7434AN4, which carries a linear chromosome and three characteristic linear plasmids.
    Nindita Y; Cao Z; Fauzi AA; Teshima A; Misaki Y; Muslimin R; Yang Y; Shiwa Y; Yoshikawa H; Tagami M; Lezhava A; Ishikawa J; Kuroda M; Sekizuka T; Inada K; Kinashi H; Arakawa K
    Sci Rep; 2019 Jul; 9(1):10973. PubMed ID: 31358803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative Transcriptome Analysis Shows Conserved Metabolic Regulation during Production of Secondary Metabolites in Filamentous Fungi.
    Nielsen JC; Prigent S; Grijseels S; Workman M; Ji B; Nielsen J
    mSystems; 2019; 4(2):. PubMed ID: 31020039
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Deng Q; Xiao L; Liu Y; Zhang L; Deng Z; Zhao C
    Synth Syst Biotechnol; 2019 Mar; 4(1):34-39. PubMed ID: 30623120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of Branched-Chain Amino Acid Catabolism on Fatty Acid and Alkene Biosynthesis in
    Surger MJ; Angelov A; Stier P; Übelacker M; Liebl W
    Front Microbiol; 2018; 9():374. PubMed ID: 29593665
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.