These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 7768899)

  • 1. The molecular chaperonin cpn60 displays local flexibility that is reduced after binding with an unfolded protein.
    Gorovits BM; Horowitz PM
    J Biol Chem; 1995 Jun; 270(22):13057-62. PubMed ID: 7768899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binding and hydrolysis of nucleotides in the chaperonin catalytic cycle: implications for the mechanism of assisted protein folding.
    Jackson GS; Staniforth RA; Halsall DJ; Atkinson T; Holbrook JJ; Clarke AR; Burston SG
    Biochemistry; 1993 Mar; 32(10):2554-63. PubMed ID: 8095403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alteration of the quaternary structure of cpn60 modulates chaperonin-assisted folding. Implications for the mechanism of chaperonin action.
    Mendoza JA; Demeler B; Horowitz PM
    J Biol Chem; 1994 Jan; 269(4):2447-51. PubMed ID: 7905478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chaperonin cpn60 from Escherichia coli protects the mitochondrial enzyme rhodanese against heat inactivation and supports folding at elevated temperatures.
    Mendoza JA; Lorimer GH; Horowitz PM
    J Biol Chem; 1992 Sep; 267(25):17631-4. PubMed ID: 1355476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intermediates in the chaperonin-assisted refolding of rhodanese are trapped at low temperature and show a small stoichiometry.
    Mendoza JA; Lorimer GH; Horowitz PM
    J Biol Chem; 1991 Sep; 266(26):16973-6. PubMed ID: 1680127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrophobic surfaces that are hidden in chaperonin Cpn60 can be exposed by formation of assembly-competent monomers or by ionic perturbation of the oligomer.
    Horowitz PM; Hua S; Gibbons DL
    J Biol Chem; 1995 Jan; 270(4):1535-42. PubMed ID: 7829481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High hydrostatic pressure induces the dissociation of cpn60 tetradecamers and reveals a plasticity of the monomers.
    Gorovits B; Raman CS; Horowitz PM
    J Biol Chem; 1995 Feb; 270(5):2061-6. PubMed ID: 7836434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Labeling of a thiol residue in sarcoplasmic reticulum ATPase by pyrene maleimide. Solvent accessibility studied by fluorescence quenching.
    Kurtenbach E; Verjovski-Almeida S
    J Biol Chem; 1985 Aug; 260(17):9636-41. PubMed ID: 3160700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of a stable, reactivatable complex between chaperonin 60 and mitochondrial rhodanese.
    Mendoza JA; Butler MC; Horowitz PM
    J Biol Chem; 1992 Dec; 267(34):24648-54. PubMed ID: 1360012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human plasma fibronectin structure probed by steady-state fluorescence polarization: evidence for a rigid oblate structure.
    Benecky MJ; Kolvenbach CG; Wine RW; DiOrio JP; Mosesson MW
    Biochemistry; 1990 Mar; 29(12):3082-91. PubMed ID: 2337580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The stability of the molecular chaperonin cpn60 is affected by site-directed replacement of cysteine 518.
    Luo GX; Horowitz PM
    J Biol Chem; 1994 Dec; 269(51):32151-4. PubMed ID: 7798211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The origins and consequences of asymmetry in the chaperonin reaction cycle.
    Burston SG; Ranson NA; Clarke AR
    J Mol Biol; 1995 May; 249(1):138-52. PubMed ID: 7776368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model peptide studies demonstrate that amphipathic secondary structures can be recognized by the chaperonin GroEL (cpn60).
    Brazil BT; Cleland JL; McDowell RS; Skelton NJ; Paris K; Horowitz PM
    J Biol Chem; 1997 Feb; 272(8):5105-11. PubMed ID: 9030576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional consequences of single:double ring transitions in chaperonins: life in the cold.
    Ferrer M; Lünsdorf H; Chernikova TN; Yakimov M; Timmis KN; Golyshin PN
    Mol Microbiol; 2004 Jul; 53(1):167-82. PubMed ID: 15225312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chaperonins facilitate the in vitro folding of monomeric mitochondrial rhodanese.
    Mendoza JA; Rogers E; Lorimer GH; Horowitz PM
    J Biol Chem; 1991 Jul; 266(20):13044-9. PubMed ID: 1677004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The slow folding reaction of barstar: the core tryptophan region attains tight packing before substantial secondary and tertiary structure formation and final compaction of the polypeptide chain.
    Sridevi K; Juneja J; Bhuyan AK; Krishnamoorthy G; Udgaonkar JB
    J Mol Biol; 2000 Sep; 302(2):479-95. PubMed ID: 10970747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sulfhydryl modification of E. coli Cpn60 leads to loss of its ability to support refolding of rhodanese but not to form a binary complex.
    Mendoza JA; Horowitz PM
    J Protein Chem; 1992 Dec; 11(6):589-94. PubMed ID: 1361328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bound substrate polypeptides can generally stabilize the tetradecameric structure of Cpn60 and induce its reassembly from monomers.
    Mendoza JA; Horowitz PM
    J Biol Chem; 1994 Oct; 269(42):25963-5. PubMed ID: 7929305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Affinity of chaperonin-60 for a protein substrate and its modulation by nucleotides and chaperonin-10.
    Staniforth RA; Burston SG; Atkinson T; Clarke AR
    Biochem J; 1994 Jun; 300 ( Pt 3)(Pt 3):651-8. PubMed ID: 7912068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A monomeric variant of GroEL binds nucleotides but is inactive as a molecular chaperone.
    White ZW; Fisher KE; Eisenstein E
    J Biol Chem; 1995 Sep; 270(35):20404-9. PubMed ID: 7657615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.