BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 7768940)

  • 1. Assembly of a chromosomal replication machine: two DNA polymerases, a clamp loader, and sliding clamps in one holoenzyme particle. V. Four different polymerase-clamp complexes on DNA.
    Stukenberg PT; O'Donnell M
    J Biol Chem; 1995 Jun; 270(22):13384-91. PubMed ID: 7768940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assembly of a chromosomal replication machine: two DNA polymerases, a clamp loader, and sliding clamps in one holoenzyme particle. IV. ATP-binding site mutants identify the clamp loader.
    Xiao H; Naktinis V; O'Donnell M
    J Biol Chem; 1995 Jun; 270(22):13378-83. PubMed ID: 7768939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assembly of a chromosomal replication machine: two DNA polymerases, a clamp loader, and sliding clamps in one holoenzyme particle. III. Interface between two polymerases and the clamp loader.
    Onrust R; Finkelstein J; Turner J; Naktinis V; O'Donnell M
    J Biol Chem; 1995 Jun; 270(22):13366-77. PubMed ID: 7768938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assembly of a chromosomal replication machine: two DNA polymerases, a clamp loader, and sliding clamps in one holoenzyme particle. I. Organization of the clamp loader.
    Onrust R; Finkelstein J; Naktinis V; Turner J; Fang L; O'Donnell M
    J Biol Chem; 1995 Jun; 270(22):13348-57. PubMed ID: 7768936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assembly of a chromosomal replication machine: two DNA polymerases, a clamp loader, and sliding clamps in one holoenzyme particle. II. Intermediate complex between the clamp loader and its clamp.
    Naktinis V; Onrust R; Fang L; O'Donnell M
    J Biol Chem; 1995 Jun; 270(22):13358-65. PubMed ID: 7768937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Total reconstitution of DNA polymerase III holoenzyme reveals dual accessory protein clamps.
    O'Donnell M; Studwell PS
    J Biol Chem; 1990 Jan; 265(2):1179-87. PubMed ID: 2404006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ATP binding to the Escherichia coli clamp loader powers opening of the ring-shaped clamp of DNA polymerase III holoenzyme.
    Hingorani MM; O'Donnell M
    J Biol Chem; 1998 Sep; 273(38):24550-63. PubMed ID: 9733750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The delta subunit of DNA polymerase III holoenzyme serves as a sliding clamp unloader in Escherichia coli.
    Leu FP; Hingorani MM; Turner J; O'Donnell M
    J Biol Chem; 2000 Nov; 275(44):34609-18. PubMed ID: 10924523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A single subunit directs the assembly of the Escherichia coli DNA sliding clamp loader.
    Park AY; Jergic S; Politis A; Ruotolo BT; Hirshberg D; Jessop LL; Beck JL; Barsky D; O'Donnell M; Dixon NE; Robinson CV
    Structure; 2010 Mar; 18(3):285-92. PubMed ID: 20223211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA structure requirements for the Escherichia coli gamma complex clamp loader and DNA polymerase III holoenzyme.
    Yao N; Leu FP; Anjelkovic J; Turner J; O'Donnell M
    J Biol Chem; 2000 Apr; 275(15):11440-50. PubMed ID: 10753961
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA Polymerase III holoenzyme of Escherichia coli. IV. The holoenzyme is an asymmetric dimer with twin active sites.
    Maki H; Maki S; Kornberg A
    J Biol Chem; 1988 May; 263(14):6570-8. PubMed ID: 3283128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solution structure of an "open" E. coli Pol III clamp loader sliding clamp complex.
    Tondnevis F; Weiss TM; Matsui T; Bloom LB; McKenna R
    J Struct Biol; 2016 Jun; 194(3):272-81. PubMed ID: 26968362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The E. coli DNA Replication Fork.
    Lewis JS; Jergic S; Dixon NE
    Enzymes; 2016; 39():31-88. PubMed ID: 27241927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA polymerase III holoenzyme of Escherichia coli. III. Distinctive processive polymerases reconstituted from purified subunits.
    Maki S; Kornberg A
    J Biol Chem; 1988 May; 263(14):6561-9. PubMed ID: 3283127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conserved interactions in the Staphylococcus aureus DNA PolC chromosome replication machine.
    Bruck I; Georgescu RE; O'Donnell M
    J Biol Chem; 2005 May; 280(18):18152-62. PubMed ID: 15647255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein trafficking on sliding clamps.
    López de Saro F; Georgescu RE; Leu F; O'Donnell M
    Philos Trans R Soc Lond B Biol Sci; 2004 Jan; 359(1441):25-30. PubMed ID: 15065653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymerase chaperoning and multiple ATPase sites enable the E. coli DNA polymerase III holoenzyme to rapidly form initiation complexes.
    Downey CD; Crooke E; McHenry CS
    J Mol Biol; 2011 Sep; 412(3):340-53. PubMed ID: 21820444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of opening a sliding clamp.
    Douma LG; Yu KK; England JK; Levitus M; Bloom LB
    Nucleic Acids Res; 2017 Sep; 45(17):10178-10189. PubMed ID: 28973453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence measurements on the E.coli DNA polymerase clamp loader: implications for conformational changes during ATP and clamp binding.
    Goedken ER; Levitus M; Johnson A; Bustamante C; O'Donnell M; Kuriyan J
    J Mol Biol; 2004 Mar; 336(5):1047-59. PubMed ID: 15037068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The internal workings of a DNA polymerase clamp-loading machine.
    Turner J; Hingorani MM; Kelman Z; O'Donnell M
    EMBO J; 1999 Feb; 18(3):771-83. PubMed ID: 9927437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.