BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 7769095)

  • 1. Protease-cleaved iron-transferrin augments oxidant-mediated endothelial cell injury via hydroxyl radical formation.
    Miller RA; Britigan BE
    J Clin Invest; 1995 Jun; 95(6):2491-500. PubMed ID: 7769095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protease cleavage of iron-transferrin augments pyocyanin-mediated endothelial cell injury via promotion of hydroxyl radical formation.
    Miller RA; Rasmussen GT; Cox CD; Britigan BE
    Infect Immun; 1996 Jan; 64(1):182-8. PubMed ID: 8557338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pseudomonas and neutrophil products modify transferrin and lactoferrin to create conditions that favor hydroxyl radical formation.
    Britigan BE; Edeker BL
    J Clin Invest; 1991 Oct; 88(4):1092-102. PubMed ID: 1655825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pseudomonas siderophore pyochelin enhances neutrophil-mediated endothelial cell injury.
    Britigan BE; Rasmussen GT; Cox CD
    Am J Physiol; 1994 Feb; 266(2 Pt 1):L192-8. PubMed ID: 8141315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of the Pseudomonas aeruginosa secretory products pyocyanin and pyochelin generates hydroxyl radical and causes synergistic damage to endothelial cells. Implications for Pseudomonas-associated tissue injury.
    Britigan BE; Roeder TL; Rasmussen GT; Shasby DM; McCormick ML; Cox CD
    J Clin Invest; 1992 Dec; 90(6):2187-96. PubMed ID: 1469082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Possible role of bacterial siderophores in inflammation. Iron bound to the Pseudomonas siderophore pyochelin can function as a hydroxyl radical catalyst.
    Coffman TJ; Cox CD; Edeker BL; Britigan BE
    J Clin Invest; 1990 Oct; 86(4):1030-7. PubMed ID: 2170442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Augmentation of oxidant injury to human pulmonary epithelial cells by the Pseudomonas aeruginosa siderophore pyochelin.
    Britigan BE; Rasmussen GT; Cox CD
    Infect Immun; 1997 Mar; 65(3):1071-6. PubMed ID: 9038317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimulated human neutrophils limit iron-catalyzed hydroxyl radical formation as detected by spin-trapping techniques.
    Britigan BE; Rosen GM; Thompson BY; Chai Y; Cohen MS
    J Biol Chem; 1986 Dec; 261(36):17026-32. PubMed ID: 3023380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of structural features of the pseudomonas siderophore pyochelin required for its ability to promote oxidant-mediated endothelial cell injury.
    DeWitte JJ; Cox CD; Rasmussen GT; Britigan BE
    Arch Biochem Biophys; 2001 Sep; 393(2):236-44. PubMed ID: 11556810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Xanthine oxidase activity in rat pulmonary artery endothelial cells and its alteration by activated neutrophils.
    Phan SH; Gannon DE; Varani J; Ryan US; Ward PA
    Am J Pathol; 1989 Jun; 134(6):1201-11. PubMed ID: 2757114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insight into the nature and site of oxygen-centered free radical generation by endothelial cell monolayers using a novel spin trapping technique.
    Britigan BE; Roeder TL; Shasby DM
    Blood; 1992 Feb; 79(3):699-707. PubMed ID: 1310061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Xanthine oxidase-induced injury to endothelium: role of intracellular iron and hydroxyl radical.
    Kvietys PR; Inauen W; Bacon BR; Grisham MB
    Am J Physiol; 1989 Nov; 257(5 Pt 2):H1640-6. PubMed ID: 2556049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transferrin: a potential source of iron for oxygen free radical-mediated endothelial cell injury.
    Brieland JK; Clarke SJ; Karmiol S; Phan SH; Fantone JC
    Arch Biochem Biophys; 1992 Apr; 294(1):265-70. PubMed ID: 1312808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA strand break formation following exposure of bovine pulmonary artery and aortic endothelial cells to reactive oxygen products.
    Spragg RG
    Am J Respir Cell Mol Biol; 1991 Jan; 4(1):4-10. PubMed ID: 1846077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxygen radical-induced erythrocyte hemolysis by neutrophils. Critical role of iron and lactoferrin.
    Vercellotti GM; van Asbeck BS; Jacob HS
    J Clin Invest; 1985 Sep; 76(3):956-62. PubMed ID: 2995452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactive oxygen metabolite-induced toxicity to cultured bovine endothelial cells: status of cellular iron in mediating injury.
    Hiraishi H; Terano A; Razandi M; Pedram A; Sugimoto T; Harada T; Ivey KJ
    J Cell Physiol; 1994 Jul; 160(1):132-4. PubMed ID: 8021293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binding of myeloperoxidase to bacteria: effect on hydroxyl radical formation and susceptibility to oxidant-mediated killing.
    Britigan BE; Ratcliffe HR; Buettner GR; Rosen GM
    Biochim Biophys Acta; 1996 Aug; 1290(3):231-40. PubMed ID: 8765125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of hydroxyl radical by iron(III)-anthraquinone complexes through self-reduction and through reductive activation by the xanthine oxidase/hypoxanthine system.
    Malisza KL; Hasinoff BB
    Arch Biochem Biophys; 1995 Aug; 321(1):51-60. PubMed ID: 7639535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytosolic Ca2+ movements of endothelial cells exposed to reactive oxygen intermediates: role of hydroxyl radical-mediated redox alteration of cell-membrane Ca2+ channels.
    Az-ma T; Saeki N; Yuge O
    Br J Pharmacol; 1999 Mar; 126(6):1462-70. PubMed ID: 10217541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lactoferrin enhances hydroxyl radical production by human neutrophils, neutrophil particulate fractions, and an enzymatic generating system.
    Ambruso DR; Johnston RB
    J Clin Invest; 1981 Feb; 67(2):352-60. PubMed ID: 6780607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.