These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 7769117)
1. Glycolytic inhibition: effects on diastolic relaxation and intracellular calcium handling in hypertrophied rat ventricular myocytes. Kagaya Y; Weinberg EO; Ito N; Mochizuki T; Barry WH; Lorell BH J Clin Invest; 1995 Jun; 95(6):2766-76. PubMed ID: 7769117 [TBL] [Abstract][Full Text] [Related]
2. Endothelin and angiotensin II stimulation of Na+-H+ exchange is impaired in cardiac hypertrophy. Ito N; Kagaya Y; Weinberg EO; Barry WH; Lorell BH J Clin Invest; 1997 Jan; 99(1):125-35. PubMed ID: 9011566 [TBL] [Abstract][Full Text] [Related]
3. Contributions of [Ca2+]i, [Pi]i, and pHi to altered diastolic myocyte tone during partial metabolic inhibition. Ikenouchi H; Kohmoto O; McMillan M; Barry WH J Clin Invest; 1991 Jul; 88(1):55-61. PubMed ID: 2056130 [TBL] [Abstract][Full Text] [Related]
4. Enhanced sensitivity to hypoxia-induced diastolic dysfunction in pressure-overload left ventricular hypertrophy in the rat: role of high-energy phosphate depletion. Wexler LF; Lorell BH; Momomura S; Weinberg EO; Ingwall JS; Apstein CS Circ Res; 1988 Apr; 62(4):766-75. PubMed ID: 2964946 [TBL] [Abstract][Full Text] [Related]
5. The influence of pressure overload left ventricular hypertrophy on diastolic properties during hypoxia in isovolumically contracting rat hearts. Lorell BH; Wexler LF; Momomura S; Weinberg E; Apstein CS Circ Res; 1986 May; 58(5):653-63. PubMed ID: 3708763 [TBL] [Abstract][Full Text] [Related]
6. Mechanism of the diastolic dysfunction induced by glycolytic inhibition. Does adenosine triphosphate derived from glycolysis play a favored role in cellular Ca2+ homeostasis in ferret myocardium? Kusuoka H; Marban E J Clin Invest; 1994 Mar; 93(3):1216-23. PubMed ID: 8132761 [TBL] [Abstract][Full Text] [Related]
7. Effects of the nitric oxide donor sodium nitroprusside on intracellular pH and contraction in hypertrophied myocytes. Ito N; Bartunek J; Spitzer KW; Lorell BH Circulation; 1997 May; 95(9):2303-11. PubMed ID: 9142009 [TBL] [Abstract][Full Text] [Related]
8. Exacerbation of left ventricular ischemic diastolic dysfunction by pressure-overload hypertrophy. Modification by specific inhibition of cardiac angiotensin converting enzyme. Eberli FR; Apstein CS; Ngoy S; Lorell BH Circ Res; 1992 May; 70(5):931-43. PubMed ID: 1314716 [TBL] [Abstract][Full Text] [Related]
9. Effects of left ventricular hypertrophy on force and Ca2+ handling in isolated rat myocardium. Maier LS; Brandes R; Pieske B; Bers DM Am J Physiol; 1998 Apr; 274(4):H1361-70. PubMed ID: 9575941 [TBL] [Abstract][Full Text] [Related]
10. Cell geometry and contractile abnormalities of myocytes from failing human left ventricle. del Monte F; O'Gara P; Poole-Wilson PA; Yacoub M; Harding SE Cardiovasc Res; 1995 Aug; 30(2):281-90. PubMed ID: 7585816 [TBL] [Abstract][Full Text] [Related]
11. Failure to maintain a low ADP concentration impairs diastolic function in hypertrophied rat hearts. Tian R; Nascimben L; Ingwall JS; Lorell BH Circulation; 1997 Aug; 96(4):1313-9. PubMed ID: 9286964 [TBL] [Abstract][Full Text] [Related]
12. Glycolysis is necessary to preserve myocardial Ca2+ homeostasis during beta-adrenergic stimulation. Nakamura K; Kusuoka H; Ambrosio G; Becker LC Am J Physiol; 1993 Mar; 264(3 Pt 2):H670-8. PubMed ID: 8384419 [TBL] [Abstract][Full Text] [Related]
13. Intracellular [Ca2+] staircase in the isovolumic pressure--frequency relationship of Langendorff-perfused rat heart. Field ML; Azzawi A; Unitt JF; Seymour AM; Henderson C; Radda GK J Mol Cell Cardiol; 1996 Jan; 28(1):65-77. PubMed ID: 8745215 [TBL] [Abstract][Full Text] [Related]
14. Long-term angiotensin-converting enzyme inhibition with fosinopril improves depressed responsiveness to Ca2+ in myocytes from aortic-banded rats. Kagaya Y; Hajjar RJ; Gwathmey JK; Barry WH; Lorell BH Circulation; 1996 Dec; 94(11):2915-22. PubMed ID: 8941121 [TBL] [Abstract][Full Text] [Related]
15. Regression of cardiac hypertrophy normalizes glucose metabolism and left ventricular function during reperfusion. Wambolt RB; Henning SL; English DR; Bondy GP; Allard MF J Mol Cell Cardiol; 1997 Mar; 29(3):939-48. PubMed ID: 9152855 [TBL] [Abstract][Full Text] [Related]
16. Effects of praeruptorine C on the intracellular free calcium in normal and hypertrophied rat ventricular myocytes. Sun L; Rao MR; Wang JX Zhongguo Yao Li Xue Bao; 1997 May; 18(3):251-4. PubMed ID: 10072944 [TBL] [Abstract][Full Text] [Related]
18. The effects of metabolic inhibition on intracellular calcium and pH in isolated rat ventricular cells. Eisner DA; Nichols CG; O'Neill SC; Smith GL; Valdeolmillos M J Physiol; 1989 Apr; 411():393-418. PubMed ID: 2614727 [TBL] [Abstract][Full Text] [Related]
19. Ca2+ handling and myofibrillar Ca2+ sensitivity in ferret cardiac myocytes with pressure-overload hypertrophy. Wang J; Flemal K; Qiu Z; Ablin L; Grossman W; Morgan JP Am J Physiol; 1994 Sep; 267(3 Pt 2):H918-24. PubMed ID: 8092296 [TBL] [Abstract][Full Text] [Related]
20. Depressed intracellular calcium transients and contraction in myocytes from hypertrophied and failing guinea pig hearts. Siri FM; Krueger J; Nordin C; Ming Z; Aronson RS Am J Physiol; 1991 Aug; 261(2 Pt 2):H514-30. PubMed ID: 1831600 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]