BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 7769151)

  • 21. Development of vagal afferent projections circumflex to the obex in the embryonic chick brainstem visualized with voltage-sensitive dye recording.
    Momose-Sato Y; Kinoshita M; Sato K
    Neuroscience; 2007 Aug; 148(1):140-50. PubMed ID: 17629626
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Brain stem localization of vagal preganglionic neurons.
    Kalia M
    J Auton Nerv Syst; 1981 Apr; 3(2-4):451-81. PubMed ID: 7276442
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Vagal modulation of responses elicited by stimulation of the aortic depressor nerve in neurons of the rostral ventrolateral medulla oblongata in the rat.
    Zagon A; Rocha I; Ishizuka K; Spyer KM
    Neuroscience; 1999; 92(3):889-99. PubMed ID: 10426530
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stomach-brain communication by vagal afferents in response to luminal acid backdiffusion, gastrin, and gastric acid secretion.
    Danzer M; Jocic M; Samberger C; Painsipp E; Bock E; Pabst MA; Crailsheim K; Schicho R; Lippe IT; Holzer P
    Am J Physiol Gastrointest Liver Physiol; 2004 Mar; 286(3):G403-11. PubMed ID: 14592947
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Units in tegmental nuclei responding to stimulation of gastric vagal and greater splanchnic fibers in the cat.
    Yuan CS; Barber WD
    Brain Res Bull; 1990 Nov; 25(5):685-90. PubMed ID: 2289156
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Brain stem responses to electrical stimulation of ventral vagal gastric fibers.
    Barber WD; Yuan CS
    Am J Physiol; 1989 Jul; 257(1 Pt 1):G24-9. PubMed ID: 2750906
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Response of the gastric vagal afferent activity to cholecystokinin in rats lacking type A cholecystokinin receptors.
    Kurosawa M; Bucinskaite V; Taniguchi T; Miyasaka K; Funakoshi A; Lundeberg T
    J Auton Nerv Syst; 1999 Jan; 75(1):51-9. PubMed ID: 9935269
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nitric oxide inhibits excitatory vagal afferent input to nucleus tractus solitarius neurons in anaesthetized rats.
    Kong SZ; Fan MX; Zhang BH; Wang ZY; Wang Y
    Neurosci Bull; 2009 Dec; 25(6):325-34. PubMed ID: 19927168
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Postprandial neuronal activation in the nucleus of the solitary tract is partly mediated by CCK-A receptors.
    Glatzle J; Kreis ME; Kawano K; Raybould HE; Zittel TT
    Am J Physiol Regul Integr Comp Physiol; 2001 Jul; 281(1):R222-9. PubMed ID: 11404297
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrophysiological and autoradiographical evidence for cholecystokinin A receptors on rat isolated nodose ganglia.
    Widdop RE; Krstew E; Mercer LD; Carlberg M; Beart PM; Jarrott B
    J Auton Nerv Syst; 1994; 46(1-2):65-73. PubMed ID: 8120343
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrical physiological evidence for highand low-affinity vagal CCK-A receptors.
    Li Y; Zhu J; Owyang C
    Am J Physiol; 1999 Aug; 277(2):G469-77. PubMed ID: 10444462
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pathways of Fos expression in locus ceruleus, dorsal vagal complex, and PVN in response to intestinal lipid.
    Mönnikes H; Lauer G; Bauer C; Tebbe J; Zittel TT; Arnold R
    Am J Physiol; 1997 Dec; 273(6):R2059-71. PubMed ID: 9435662
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Parabrachial nucleus: neuronal evoked responses to gastric vagal and greater splanchnic nerve stimulation.
    Yuan CS; Barber WD
    Brain Res Bull; 1991 Dec; 27(6):797-803. PubMed ID: 1786556
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Selective enhancement of synaptic inhibition by hypocretin (orexin) in rat vagal motor neurons: implications for autonomic regulation.
    Davis SF; Williams KW; Xu W; Glatzer NR; Smith BN
    J Neurosci; 2003 May; 23(9):3844-54. PubMed ID: 12736355
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrophysiological responses of nucleus tractus solitarius neurons to CCK and gastric distension in newborn lambs.
    Guevara-Guzmán R; Lévy F; Jean A; Nowak R
    Cell Mol Neurobiol; 2005 Mar; 25(2):393-406. PubMed ID: 16047548
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of type A and type B CCK receptor binding sites in rat vagus nerve.
    Corp ES; McQuade J; Moran TH; Smith GP
    Brain Res; 1993 Sep; 623(1):161-6. PubMed ID: 8221086
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Endomorphin-1 modulates intrinsic inhibition in the dorsal vagal complex.
    Glatzer NR; Derbenev AV; Banfield BW; Smith BN
    J Neurophysiol; 2007 Sep; 98(3):1591-9. PubMed ID: 17615134
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vivo modulation of vagal-identified dorsal medullary neurones by activation of different 5-Hydroxytryptamine(2) receptors in rats.
    Sévoz-Couche C; Spyer KM; Jordan D
    Br J Pharmacol; 2000 Dec; 131(7):1445-53. PubMed ID: 11090119
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Vagal afferent fibres determine the oxytocin-induced modulation of gastric tone.
    Holmes GM; Browning KN; Babic T; Fortna SR; Coleman FH; Travagli RA
    J Physiol; 2013 Jun; 591(12):3081-100. PubMed ID: 23587885
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Presynaptic melanocortin-4 receptors on vagal afferent fibers modulate the excitability of rat nucleus tractus solitarius neurons.
    Wan S; Browning KN; Coleman FH; Sutton G; Zheng H; Butler A; Berthoud HR; Travagli RA
    J Neurosci; 2008 May; 28(19):4957-66. PubMed ID: 18463249
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.