These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 7769151)

  • 41. Peripheral administration of cholecystokinin activates c-fos expression in the locus coeruleus/subcoeruleus nucleus, dorsal vagal complex and paraventricular nucleus via capsaicin-sensitive vagal afferents and CCK-A receptors in the rat.
    Mönnikes H; Lauer G; Arnold R
    Brain Res; 1997 Oct; 770(1-2):277-88. PubMed ID: 9372230
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Interactions between Brainstem Neurons That Regulate the Motility to the Stomach.
    Bellusci L; Garcia DuBar SN; Kuah M; Castellano D; Muralidaran V; Jones E; Rozeboom AM; Gillis RA; Vicini S; Sahibzada N
    J Neurosci; 2022 Jun; 42(26):5212-5228. PubMed ID: 35610046
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Lesions of the dorsal vagal complex abolish increases in meal size induced by NMDA receptor blockade.
    Treece BR; Ritter RC; Burns GA
    Brain Res; 2000 Jul; 872(1-2):37-43. PubMed ID: 10924673
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Convergence properties of solitary tract neurones driven synaptically by cardiac vagal afferents in the mouse.
    Paton JF
    J Physiol; 1998 Apr; 508 ( Pt 1)(Pt 1):237-52. PubMed ID: 9490844
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Vagotomy blunts cardiorespiratory responses to vagal afferent stimulation via pre- and postsynaptic effects in the nucleus tractus solitarii.
    Hofmann GC; Gama de Barcellos Filho P; Khodadadi F; Ostrowski D; Kline DD; Hasser EM
    J Physiol; 2024 Mar; 602(6):1147-1174. PubMed ID: 38377124
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Withdrawal and restoration of central vagal afferents within the dorsal vagal complex following subdiaphragmatic vagotomy.
    Peters JH; Gallaher ZR; Ryu V; Czaja K
    J Comp Neurol; 2013 Oct; 521(15):3584-99. PubMed ID: 23749657
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Projection target-specific action of nicotine in the caudal nucleus of the solitary tract.
    Feng L; Uteshev VV
    J Neurosci Res; 2014 Nov; 92(11):1560-72. PubMed ID: 24975270
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cooperation of NMDA and tachykinin NK(1) and NK(2) receptors in the medullary transmission of vagal afferent input from the acid-threatened rat stomach.
    Jocic M; Schuligoi R; Schöninkle E; Pabst MA; Holzer P
    Pain; 2001 Jan; 89(2-3):147-57. PubMed ID: 11166470
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Olfactory and visceral projections to the nucleus of the solitary tract.
    Garcia-Diaz DE; Jimenez-Montufar LL; Guevara-Aguilar R; Wayner MJ; Armstrong DL
    Physiol Behav; 1988; 44(4-5):619-24. PubMed ID: 3237848
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An in vitro brainstem-heart preparation of the neonatal rat with intact right vagus nerve.
    Aouda A; Hayashi F; Fukuda Y; Masuda Y
    Jpn J Physiol; 1997 Oct; 47(5):443-8. PubMed ID: 9504131
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Protection induced by cholecystokinin-8 (CCK-8) in ethanol-induced gastric lesions is mediated via vagal capsaicin-sensitive fibres and CCKA receptors.
    Evangelista S; Maggi CA
    Br J Pharmacol; 1991 Jan; 102(1):119-22. PubMed ID: 2043917
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Gastric-vagal solitary neurons excited by paraventricular nucleus microstimulation.
    Rogers RC; Hermann GE
    J Auton Nerv Syst; 1985 Dec; 14(4):351-62. PubMed ID: 4086724
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Lower oesophageal sphincter relaxation evoked by stimulation of the dorsal motor nucleus of the vagus in ferrets.
    Abrahams TP; Partosoedarso ER; Hornby PJ
    Neurogastroenterol Motil; 2002 Jun; 14(3):295-304. PubMed ID: 12061915
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Morphological and electrophysiological properties of neurones in the dorsal vagal complex of the rat activated by arterial baroreceptors.
    Deuchars J; Li YW; Kasparov S; Paton JF
    J Comp Neurol; 2000 Feb; 417(2):233-49. PubMed ID: 10660900
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Role of glutamate receptors in transmission of vagal cardiac input to neurones in the nucleus tractus solitarii in dogs.
    Seagard JL; Dean C; Hopp FA
    J Physiol; 1999 Oct; 520 Pt 1(Pt 1):243-53. PubMed ID: 10517815
    [TBL] [Abstract][Full Text] [Related]  

  • 56. D-glucose modulates synaptic transmission from the central terminals of vagal afferent fibers.
    Wan S; Browning KN
    Am J Physiol Gastrointest Liver Physiol; 2008 Mar; 294(3):G757-63. PubMed ID: 18202107
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Non-NMDA receptors transmit cardiopulmonary C fibre input in nucleus tractus solitarii in rats.
    Wilson CG; Zhang Z; Bonham AC
    J Physiol; 1996 Nov; 496 ( Pt 3)(Pt 3):773-85. PubMed ID: 8930843
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Morphology and projections of neurobiotin-labeled nucleus tractus solitarii neurons recorded in vitro.
    Barnes KL; McQueeney AJ; Barrett WR; Knowles WD
    Brain Res Bull; 1994; 34(4):339-48. PubMed ID: 7521778
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Membrane and synaptic properties of nucleus tractus solitarius neurons projecting to the caudal ventrolateral medulla.
    Li DP; Yang Q
    Auton Neurosci; 2007 Oct; 136(1-2):69-81. PubMed ID: 17537680
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Gating of vagal inputs by sciatic afferents in nonspinally projecting neurons in the rat rostral ventrolateral medulla oblongata.
    Zagon A; Hughes DI
    Eur J Neurosci; 2001 Feb; 13(4):781-92. PubMed ID: 11207813
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.