These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 7769462)
1. Recurring genetic aberrations in cancer cells: chromosomes as potential targets for nuclear medicine imaging. Rowley JD J Nucl Med; 1995 Jun; 36(6 Suppl):22S-24S. PubMed ID: 7769462 [TBL] [Abstract][Full Text] [Related]
2. Efficacy of current molecular cytogenetic protocols for the diagnosis of chromosome aberrations in tumor specimens. Lichter P; Fischer K; Joos S; Fink T; Baudis M; Potkul RK; Ohl S; Solinas-Toldo S; Weber R; Stilgenbauer S; Bentz M; Döhner H Cytokines Mol Ther; 1996 Sep; 2(3):163-9. PubMed ID: 9384700 [TBL] [Abstract][Full Text] [Related]
3. [Specific chromosome aberrations in leukemias and tumors in childhood]. Lampert F; Harbott J; Christiansen H Monatsschr Kinderheilkd; 1987 Dec; 135(12):811-8. PubMed ID: 2830504 [TBL] [Abstract][Full Text] [Related]
4. Spectral karyotyping analysis of head and neck squamous cell carcinoma. Singh B; Gogineni S; Goberdhan A; Sacks P; Shaha A; Shah J; Rao P Laryngoscope; 2001 Sep; 111(9):1545-50. PubMed ID: 11568603 [TBL] [Abstract][Full Text] [Related]
5. Chromosomal abnormalities and tumor development: from genes to therapeutic mechanisms. Cobaleda C; Pérez-Losada J; Sánchez-García I Bioessays; 1998 Nov; 20(11):922-30. PubMed ID: 9872058 [TBL] [Abstract][Full Text] [Related]
6. Spectral karyotyping combined with locus-specific FISH simultaneously defines genes and chromosomes involved in chromosomal translocations. Tonon G; Roschke A; Stover K; Shou Y; Kuehl WM; Kirsch IR Genes Chromosomes Cancer; 2000 Apr; 27(4):418-23. PubMed ID: 10719373 [TBL] [Abstract][Full Text] [Related]
7. Combined spectral karyotyping, comparative genomic hybridization, and in vitro apoptyping of a panel of Burkitt's lymphoma-derived B cell lines reveals an unexpected complexity of chromosomal aberrations and a recurrence of specific abnormalities in chemoresistant cell lines. Karpova MB; Schoumans J; Blennow E; Ernberg I; Henter JI; Smirnov AF; Nordenskjöld M; Fadeel B Int J Oncol; 2006 Mar; 28(3):605-17. PubMed ID: 16465364 [TBL] [Abstract][Full Text] [Related]
8. [Exploration of novel molecular targets for cancer therapy based on genomic aberrations]. Imoto I; Inazawa J Gan To Kagaku Ryoho; 2005 Nov; 32(12):1891-4. PubMed ID: 16282722 [TBL] [Abstract][Full Text] [Related]
9. A recurring pattern of chromosomal aberrations in mammary gland tumors of MMTV-cmyc transgenic mice. Weaver ZA; McCormack SJ; Liyanage M; du Manoir S; Coleman A; Schröck E; Dickson RB; Ried T Genes Chromosomes Cancer; 1999 Jul; 25(3):251-60. PubMed ID: 10379871 [TBL] [Abstract][Full Text] [Related]
10. Loss of genetic material is more common than gain in acute myeloid leukemia with complex aberrant karyotype: a detailed analysis of 125 cases using conventional chromosome analysis and fluorescence in situ hybridization including 24-color FISH. Schoch C; Haferlach T; Bursch S; Gerstner D; Schnittger S; Dugas M; Kern W; Löffler H; Hiddemann W Genes Chromosomes Cancer; 2002 Sep; 35(1):20-9. PubMed ID: 12203786 [TBL] [Abstract][Full Text] [Related]
11. [Karyotype, aging, and cancer types: are they linked?]. Dutrillaux B Bull Cancer; 2000 Jan; 87(1):19-23. PubMed ID: 10673627 [No Abstract] [Full Text] [Related]
12. Chromosomal imbalance maps of malignant solid tumors: a cytogenetic survey of 3185 neoplasms. Mertens F; Johansson B; Höglund M; Mitelman F Cancer Res; 1997 Jul; 57(13):2765-80. PubMed ID: 9205089 [TBL] [Abstract][Full Text] [Related]
13. [Progress in diagnosis of leukemia]. Kamada N; Ishimae M; Eguchi M Rinsho Byori; 1996 Aug; 44(8):736-42. PubMed ID: 8816059 [TBL] [Abstract][Full Text] [Related]
14. Specific chromosomal aberrations in mouse lung adenocarcinoma cell lines detected by spectral karyotyping: a comparison with human lung adenocarcinoma. Sargent LM; Senft JR; Lowry DT; Jefferson AM; Tyson FL; Malkinson AM; Coleman AE; Reynolds SH Cancer Res; 2002 Feb; 62(4):1152-7. PubMed ID: 11861397 [TBL] [Abstract][Full Text] [Related]
15. Detection of three novel translocations and specific common chromosomal break sites in malignant melanoma by spectral karyotyping. Sargent LM; Nelson MA; Lowry DT; Senft JR; Jefferson AM; Ariza ME; Reynolds SH Genes Chromosomes Cancer; 2001 Sep; 32(1):18-25. PubMed ID: 11477657 [TBL] [Abstract][Full Text] [Related]
16. Specific patterns of chromosomal gains and losses associate with t(3;14), t(8;14), and t(14;18) in diffuse large B-cell lymphoma. Sheth A; de Melo VA; Szydlo R; Macdonald DH; Reid AG; Wagner SD Cancer Genet Cytogenet; 2009 Oct; 194(1):48-52. PubMed ID: 19737654 [TBL] [Abstract][Full Text] [Related]
17. Hidden chromosome abnormalities in haematological malignancies detected by multicolour spectral karyotyping. Veldman T; Vignon C; Schröck E; Rowley JD; Ried T Nat Genet; 1997 Apr; 15(4):406-10. PubMed ID: 9090389 [TBL] [Abstract][Full Text] [Related]
18. Molecular logic underlying chromosomal translocations, random or non-random? Lin C; Yang L; Rosenfeld MG Adv Cancer Res; 2012; 113():241-79. PubMed ID: 22429857 [TBL] [Abstract][Full Text] [Related]
19. FISH in cancer diagnosis and prognostication: from cause to course of disease. Weier HU; Greulich-Bode KM; Ito Y; Lersch RA; Fung J Expert Rev Mol Diagn; 2002 Mar; 2(2):109-19. PubMed ID: 11962331 [TBL] [Abstract][Full Text] [Related]